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Abstract

We present different concepts in measure theory. We construct the
Lebesgue measure on R. We define the Lebesgue integral and prove
some famous convergence theorems. We compare the Riemann integral
with the Lebesgue integral and prove some famous results. We give
some examples of how to use the Lebesgue integral.

By doing the above, we hope to give a brief overview of the Lebesgue
theory.
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1 Introduction

In 1904 Henri Lebesgue invented a new way of integrating functions. His
theory of integration was a generalization of that of Riemann’s—a larger set
of functions could be integrated and the problem of limits interacting badly
with integrals was solved.

In the center of the Lebesgue integral stands the following idea: the limit
of an integral should equal the integral of the limit. In other words,

lim fn:/ lim f,. (1)

(This equality holds true in the Riemann sense too, but under less mild
conditions.) The aim of this paper is to establish (1). The following is some
background that will provide a starting point.

Suppose we have (1), and consider any nonnegative function f. Let
0 < fi < fo < ...be any sequence of simple functions' approximating f
from below. (Such a sequence is guaranteed to exist.) Since integrals should
be sensitive to size,

lim /fn:sup{/fn}, n=1,23,....
n—oo

[ = [ s

so for any nonnegative function f we are prone to define

[ £ =swt [ £,

where (f,,) is any sequence of simple functions approximating f from below.

But this is to say that
[ £=swt [ o )

LA simple function is a function with finite range




where the supremum is taken over all simple function ¢ such that 0 < ¢ < f.
(For a negative function we simply consider — f.)

It remains to define [ ¢ where ¢ is simple. As we know, Riemann defined
his integral by partitioning the domain. Let us try something different.
Instead of partitioning the domain, let us partition the range. This was
Lebesgue’s breakthrough idea. It is the Lebesgue integral in a nutshell.

See Figure 1.

Figure 1: Riemann integration (blue) and Lebesgue integration (red). The Rie-
mann integral partitions the domain of f, while the Lebesgue integral partitions
the range of f

In a letter to Paul Montel, Lebesgue summarized his approach:

I have to pay a certain sum, which I have collected in my pocket.
I take the bills and coins out of my pocket and give them to the
creditor in the order I find them until I have reached the total
sum. This is the Riemann integral. But I can proceed differently.
After T have taken all the money out of my pocket I order the
bills and coins according to identical values and then I pay the
several heaps one after the other to the creditor. This is my
integral. —Henri Lebesgue

Inspired by Lebesgue, let us partition the range of . Then

[ =3 amvy

where
e q; is the different values ¢ assumes,

e D); are the points where ¢ assumes a;, and



e m(D;) is the size or measure of D;.

Note that D; can be written as

Di = {z: p(x) = ai} = o~ (a).

We call D; the preimage of a; under .
If we want to integrate a large set of functions, measuring the preimage
can be quite intricate. This is why Lebesgue invented measure theory.

2  Outline

Section 3, Measure on a c-algebra
We define a o-algebra. We define sequences of sets and their limit.
We define generated o-algebras. We define the Borel o-algebra. We
define the concept of a measure on a o-algebra. We define measure
sequences and their limits, and some important results regarding them.
We define the concept of measurable space and measure space.

Section 4, Outer measure
We define the concept of an outer measure p*. We classify sets which
are outer measurable, and show that the collection of all such sets is
a o-algebra. We show that p* is a measure when restricted to the
collection of all outer measurable sets. We demonstrate a concrete
way of constructing an outer measure.

Section 5, Lebesgue measure on R
We construct the Lebesgue measure on R—using the Lebesgue outer
measure. We show that all open sets in R are Lebesgue measurable.
We prove some properties of the Lebesgue measurable space. We prove
the existence of non Lebesgue measurable sets in R.

Section 6, Measurable functions
We define measurable functions. We define measurability of sequences
of functions. We define the positive and negative part of f, the re-
striction and extension of f, and their measurability. We also define
the concepts of real-valued and convergence almost everywhere.

Section 7, Almost everywhere
In this section we introduce the concept of almost everywhere.

Section 8, The Lebesgue Integral
We define the Lebesgue integral. We investigate some of its properties.
We prove some famous convergence theorems, including Lebesgue’s
monotone convergence theorem, Fatou’s theorem and Lebesgue’s dom-
inated convergence theorem.



Section 9, Comparison with the Riemann integral

We compare the Riemann integral with the Lebesgue integral. We
show that if a bounded function is Riemann integrable over an interval
[a, b], it is Lebesgue integrable. We show that f is Riemann integrable
if and only if the set of discontinuity points has measure 0. We prove
the counterpart to the Lebesgue dominated convergence theorem in
the Riemann sense. We demonstrate in a few examples how to use the
Lebesgue integral.

3 Measure on a o-algebra

Notations. N = {1,2,3,...}, Z ={0,£1,+2,...}, R is the real line. P(X)
is the collection of all subsets of a set X.

Let X be any set. Suppose we want a function that measures subsets of
X. Let us call such a function a measure, and denote it by

m: P(X) — [0, 00]. (3)

m should meet certain criteria that we normally associate with measur-
ing. (Note that one such criterion is already made implicit in (3); since no
measure can be negative, the range of m is positive or zero.)

m should be countably additive, meaning that for any disjoint sets A and
B in P(X),

m(AU B) =m(A) + m(B).

Furthermore, m should be invariant under translation. This means that
when we translate a set in space, its measure should stay the same.

Ideally the domain of m would be P(X), so that every subset of X could
be measured. Unfortunately this is not possible. In 1914 Felix Hausdorff
showed that is impossible to define a measure on P(R) that is countably
additive and at the same time invariant under translation. This is why we
introduce o-algebras. As we will see, a o-algebra is a collection of subsets of
X that is measurable with respect to some measure m.

3.1 o-algebra of sets

Definition 1 (Algebra of subsets). Let X be a set. A collection A of subsets
of X is called an algebra of subsets of X if it satisfies the following conditions:

1° X € A,
2° Ae A= A€ A,
3° AABe A= AUBcec A.

Lemma 1. If A is an algebra of subsets of X, then



(1) ABe A= ANBE A,
(2) ABc A= A\ Bec A.
Proof. ANB = (A°UB°)°e A, A\B=ANB°€ A 0

Definition 2 (o-algebra of subsets). An algebra A of subsets of a set X is
called a o-algebra if is satisfies the following additional condition:

4° (Ap:neN)C A= U,en4n €A

Example 1. P(X) is a o-algebra of subsets of X. It is the greatest o-
algebra of subsets of X in the sense that if A is a g-algebra of subsets of X
and if P(X) C A, then A =P(X).

Lemma 2. If A is a o-algebra of subsets of set X, then (A, :n € N) C A
= Nhen An € A.

Proof. ﬂneN A, = (UneN An)c e A. O

3.2 Limits of sequences of sets

Definition 3 (Increasing and decreasing sequences of sets). Let (A, : n € N)
be a sequence of subsets of X. (A, : n € N) is said to be an increasing
sequence and we write A, T if A, C Apt1 for n € N. We say that (A, :
n € N) is a decreasing sequence and write A, | if Apt1 C A, for n € N.
A sequence (A, : n € N) is called monotone if it is either increasing or
decreasing. For an increasing sequence, we define

lim A, = UAn:{xeX:xeAnforsomenEN}.

n—oo
neN

For a decreasing sequence (A, : n € N), we define

lim A, = ﬂAn:{weX:xeAnforeverynEN}.

n—oo
neN

In order to define the limit of sequences of sets, we must define the limit
inferior and the limit superior of sequences of sets.

Definition 4 (Limit inferior, limit superior). The limit inferior and the
limit superior of a sequence (A, :n € N) of subsets of a set X is defined by

liminf A, = U M 4

neNk>n
limsup 4, = ﬂ U Ay
oo neNk>n



Definition 5 (Convergent sequence). Let (A, : n € N) be an arbitrary
sequence of subsets of a set X. We say that the sequence converges if
liminf,, o Ay, = limsup,, .., 4n, and we set

lim A, = liminf A,, = limsup A,.
n—00 n—00 n—00

If this does mot hold, we say that the sequence diverges.

Remark 1. It can be shown that for any sequence (A, : n € N), both
liminf,,_,~ A4, and limsup,,_, . A, lies in A. In particular if (A, : n € N)
converges, then lim, ,., 4, € A.

3.3 Generated o-algebras

It is useful to define the idea of a smallest o-algebra.

Definition 6 (Collection of indexed sets). Let A be any set. We call {E, :
a € A} a collection of sets indexed by A.

Remark 2. Let {A, : @ € A} be a collection of o-algebras of subsets of X
where A is an arbitrary indexing set. It is routine to verify that Naeca Aq 18
a o-algebra of subsets of X.

Theorem 1. Let C be any collection of subsets of X. There exists a smallest
o-algebra of Ay of subsets of X containing C, smallest in the sense that if
A is a o-algebra of subsets of X containing C then Ay C A. Similarly there
exists a smallest algebra containing C.

Proof. P(X) is a o-algebra of X containing C. Let {A, : o € A} be the
collection of all g-algebras of subsets of X containing C. By Remark 2,
Naca Aa is a o-algebra that contains C. It is the smallest such o-algebra,
since for any o-algebra A containing C, we have A D (¢4 Aa- O

Definition 7 (o-generated set). For any collection C of subsets of a set X,
we write o(C) for the smallest o-algebra of subsets of X containing C and
call it the o-algebra generated by C.

3.4 Borel s-algebras

Let us review some topology.

Definition 8 (Topology, topological space). Let X be a set. A collection of
subsets of X is called a topology on X if it satisfies:

1° D e D,

2° X eD,



3° {Eq:a€ A} CD = Jyen Ba €D,

4° E1,Eo e D= E1NEy; €D.

The pair (X, D) is called a topological space, and the sets in D are called the
open sets of the topological space.

Definition 9 (Borel set). We call the o-algebra of D the Borel o-algebra of
subsets of the topological space (X, D) and we write Bx or B(X) for it. We
call its members the Borel sets of the topological space.

Definition 10. Let (X, D) be a topological space. A set E C X is called a
Gs-set if it is the intersection of countably many open sets. A subset E of
X is called an Fy-set if it the union of countably many closed sets.

If introducing the concept of topology seems mysterious, let us justify
it here. We will use the Borel sets on R when we talk about the Lebesgue
measure on R. Since B(R) is a o-algebra, it necessarily contains all open
sets, all closed sets, all unions of open sets, all unions of closed sets, all
intersections of closed sets, and all intersections of open sets. So by starting
with open sets, we can—by the virtue of B(R) being a o-algebra—generate
a very large subset of P(R). The Borel sets on R can be thought of as all
conceivable subsets of R.

3.5 Measure on a c-algebra

Notation 1. Let R = {—o0o}URU{oc} be the extended real number system.

Definition 11. Let C be a collection of subsets of a set X. Let v be a non-
negative extended real-valued set function on C. We say that

(a) v is monotone on C if v(E1) < v(E2) for Ey,Ey € C such that E; C
Es.

(b) v is additive on C if v(E1 U E2) = v(E1) + v(E2) for E1, Ey € C such
that E1 N Ey = 0.

(¢) ~v is finitely additive on C if y(UR_ Ey) = Y p_ Y(Ey) for every dis-
joint finite sequence (Ey : k =1,...,n) in C such that U}_,Ey € C.

(d) ~ is countably additive on C if v(Up_1Ex) = Y 11 V(Eg) for every
disjoint sequence (Ey, : n € N) in C such that U} Ep € C.

(e) v is subadditive on C if v(E1 U Eg) < ~v(E1) 4+ vy(E2) for E1,E2 € C
such that B4 U Ey € C.

(f) 7 is finitely subadditive on C if v(Up_1Ex) < Y 3y ¥(Eg) for every
finite sequence (Ey : k=1,...,n) in C such that U}_,E} € C.



(9) ~v is countable subadditive on C if y(Un En) < D2, cnV(En) for every
sequence (Ey, :n € N) in C such that UpenEy, € C.

Lemma 3. For any sequence (E, : n € N) in an algebra A of subsets of X,
there exists a disjoint sequence (Fy, :n € N) in A such that

N N
1) JEn=JF and (2) |JE. =] PFn
n=1 n=1

neN neN
In particular, if A is a o-algebra, then |,y Fr € A.
Proof. Let Fy = Ey and F,, = E,, \ (U1 E}) € A, and use induction. [

Lemma 4. Let v be a nonnegative extened real-valued set function on an
algebra A of subsets of a set X.

(a) If v is additive on A, it is (1) finitely additive, (2) monotone and (3)
finitely subadditive on A.

(b) If v is countably additive on A, then it is countably subadditive on A.

Proof. (a). The proof of (1) and (2) is routine and independent of (3).
Let us prove (3). Let (Ey : k=1,...,n) be a finite sequence in A, then
using Lemma 3, (1) and (2),

n

YU B = (U Fe) = D _v(Fe) <D v(EBw).
=1

k=1 k k=1 k=1

This proves (a). The proof of (b) is done similarly. O

Proposition 1. Let v be a nonnegative extended real-valued set function on
an algebra Aof subsets of a set X. If v is additive and countably subadditive
on A then v is countably additive on A.

Definition 12 (Measure). Let A be a o-algebra of subsets of a set X. A
set function p defined on A is called a measure if it satisfies the following
conditions:

1° u(E) € [0,00] for every E € A,

2° () =0,

3° w s countably additive.
Remark 3. Note that

(1) p is finitely additive,

(2) p is monotone,
(3) Er, By € A, Ex C By, p(E1) < oo = p(E2 \ E1) = p(E2) — p(Er),
(4)

4) p is countably subadditive.

10



3.6 Measures of a sequence of sets

Theorem 2 (Monotone convergence theorem for sequences of measurable
sets). Let p be a measure on a o-algebra A of subsets of a set X. Let (E,, :
n € N) be a monotone sequence in A.

(a) If E, T, then li_}m w(Ey) = p( lim E,).

n—oo
(b) If E, |, then li_}m w(Ey) = p( li_}In E,), provided that there exists a
set A € A with p(A) < oo such that By C A.

Proof. (a) Suppose E,, T. Then u(E,) 1. If u(E,,) = oo for some ng € N,

nl;ngo p(Ey,) = oo. Since Ey is increasing, E,y C U,en En = 71113010 E,, and so

N(nlggo En) 2 p(En,y) = .
If u(Ey) < oo for all n € N, consider the disjoint sequence (F,, : n € N)
in A defined by F,, = E, \ E,_1 for n € N where Ey = (). Then since

UneN E, = UneN Fy,

u(lim B,) = p(|) F) = 3 p(Fa) = 3 [n(En) — (B
neN neN neN

= lim » [u(Ey) — p(Ep-1)] = lim [u(En) — p(Eo)]
k=1

= o, wlBn).

(b) Let (F, : n € N) be disjoint sequence in A defined by F,, = E,, \ En11
for n € N. Then

neN neN

To see this, let x € E1 \ [),cny En- Since E,, |, there exists a smallest
no € N such that x ¢ E, 1. Then x € Epy \ Engi1 = Fry € Upen Fo-

Conversely, if € (J,ey Fn, then 2 € Fyy = Ep, \ Epyy1 for some
no € N. Thus z € E,, C E1, and since x ¢ Ey 11, we have x ¢ (), cn En.
Thus z € By \ (),,cyy £n- This proves (1).

By (1),

(ope)ole)

neN neN

where, since E, |,

[t (El\ N En) = pu(Er) — p <ﬂ En> = p(Er) — p(lim Ep). (6)

neN neN

11



Now

M(UFn> :Zﬂ(Fn):ZM(En\EnJrI) (7)

neN neN neN

neN k=1
= lim [u(Er) = p(Eni1)] = p(Er) = lim pu(Eppa). (9)
Substituting (3) and (4) into (2), we arrive at the desired result. O

Theorem 3. Let u be a measure on a o-algebra of subsets of a set X.
(a) For an arbitrary sequence (E, : n € N) in A, we have

p(liminf F,,) < liminf pu(E,).

n—oo n—oo

(b) If there exists A € A with u(A) < oo such that E,, C A forn € N,
then
p(limsup Ey,) > limsup p(Ey).

n—o0 n—oo

c oth lim E,, and lim n) exist, then
If both lim E, d lim pu(E ) h
n—o0 n—oo
BLkg, Bn) < g, (En)-

(d) If Ii_)m E, exists and if there exists A € A with (A) < oo such that
E, C A forn €N then li_>m w(Ey,) and

p(lim E,) = lim u(E,).

n—oo n—oo

Proof. 1. liminf E,, = Upen Ni>pn Er = limp 00 Nk>n Eg.  Using (a) in
n—oo - -

Theorem 2, we have

p(lim inf ﬂ Ey) = liminf u( ﬂ Ey) = limsup p( ﬂ Ey) < liminf u(E,),

n—00 n—o00 n—o00
k>n k>n oo k>n

2. Assume what is given. Similarly as above,

p(lim sup U Ey) = limsup p( U Ey) = limsup pu( U Ey) < limsup u(Ey),

n—oo k>n n—00 k>n n—00 k>n n—o0

since UanEk Cc E, C A.
3. By (a),

o le E,) = p(liminf E,) < liminf u(E,) = lim u(E,).

n—oo n—oo n—oo

12



4. By (b) and (a),

limsup p(E,) < p(limsup Ey,) = p(liminf E,,) < liminf u(E,).
n—00 n—o0 n—00 n—00

But liminf,, o p(Ey) < limsup,,_, . u(Ey,) for any sequence (E, : n €
N), and the result follows. O

3.7 Measurable space and measure space

Definition 13 (Measurable space, A-measurable set). Let A be a o-algebra
of subsets of a set X. The pair (X, A) is called a measurable space. A subset
E of X is said to be A-measurable if E € A.

Definition 14 (Measure space). If i is a measure on a o-algebra of subsets
of a set X, we call the triple (X, A, 1) a measure space.

Remark 4. Note that while (X,P(X)) is a measurable space, it is not a
measure space.

Definition 15 (Null set). Given a measure p on a o-algebra of A of subsets
of a set X, a subset E of X is called a null set with respect to the measure [
if E € A and p(E) = 0. In this case we also say that E is a null set in the
measure space (X, A, 1).

Definition 16 (Complete o-algebra). Given a measure p on a o-algebra
of A of subsets of a set X, we say that the o-algebra of A is complete with
respect to the measure p if an arbitrary subset Foy of a null set with respect
to 1 is a member of A.

4 QOuter measures

In this section we will introduce the outer measure. By its help, we will
connect the two concepts measure and o-algebra.

Definition 17 (Outer measure). Let X be a set. A set function p* defined
on the o-algebra P(X) of all subsets of X is called an outer measure on X
if it satisfies the following conditions:

(1) it is nonnegative extended real-valued,

(2) 1 (0) =0,

(3) it is monotone,

(4) it is countably subadditive.

Let us define measurability with respect to a measure.

13



Definition 18 (u*-measurable set). Let p* be an outer measure on a set
X. We say that E € P(X) is measurable with respect to p* (or simply p*-
measurable) if it satisfies the so-called Caratheodory condition:

p (A) =pu* (ANE)+ pu (AN E) for every A € P(X).

The set A is called a testing set in the Caratheodory condition. We write
M(u*) for the collection of all p*-measurable sets E € P(X).

In some sense a measurable set works as a ”ruler” of other sets.

Remark 5. By subadditivity, to verify the Caratheodory condition it suf-
fices to show that

p(ANE)+ p* (AN ES) < u*(A) for every A € P(X).
Lemma 5. Let p* be an outer measure on o set X.

(a) If E1,E2 € M(pu*), then E1 U Ey € M(u*)
(b) W (Er U Ep) = p*(En) + p*(E2) for every disjoint Er, Ey € M(u*).

Proof. Let us prove (b). Let Ey U Ejy be the testing set in the Caratheodory
condition. Since E; and Es are disjoint, u*(EyUEs) = p*((E1UEy)NE) +
p*((ErU Eq) N EY) = p*(E1) + pw*(E). O

Theorem 4. Let pu* be an outer measure on a set X. Then p* is additive
on P(X) if and only if every member of P(X) is u*-measurable.

Proof. (=) Suppose p* is additive and let £ € P(X). Then AN E and
AN E€ are disjoint with union A, so the Caratheodroy condition is satisfied.
Thus P(X) C M(p*). (<) Follows from (b) of Lemma 5. O

Remark 6. Let p* be an outer measure on a set X. It can be seen that
M(u*) is a o-algebra of subsets of X.

Theorem 5. Let p* be an outer measure on a set X. If we let u be the
restriction of p* to the o-algebra M(u*), then p is a measure on M(u*)
and furthermore (X, M(u*), ) is a complete measure space.

Proof. p* is countably subadditive on P(X) and thus p is countably subad-
ditive on M(p*). By Lemma 5, u* is additive on M(p*), and thus countably
additive on M(p*) by Proposition 1. Let £ € M(u*) and u(E) = 0. Let
Ey C E. By monotonicity, p(Ey) = 0, and

1 (AN By) + (AN E§) < r*(A),

so Eg € M(p*). Thus the space is complete. O

14



This is take-away: an outer measure induces a o-algebra. And since the
measure is just the restriction of the outer measure, one may say that a
measure induces a o-algebra. This way, the concept of a o-algebra becomes
more clear.

Definition 19 (Borel outer measure). An outer measure pu* on a topological
space X is called a Borel outer measure if Bx C M(u*).

4.1 Construction of outer measures

Definition 20 (Covering class). A collection B of subsets of a set X is called
a covering class if it satisfies the following conditions:

1° there exists (Vi : n € N) C B such that |J,cn Vi = X,
2° 0 € B.

For every E € P(X), if (V, : n € N) € B such that E C |J,cn Vi then
(Vi : n € N) is a covering sequence for E.

Theorem 6. Let B be a covering class of subsets of a set X. Let v be an
arbitrary set function on B such that

1° ~ is nonnegative extended real-valued,
2° ~(0) = 0.

Let us define a set function p* on P(X) by setting for every E € P(X),

p(E) = inf{Z'y(Vn neN): (V,:neN)CB, EC U Vot
neN

Then p* is an outer measure on X, called the outer measure based on .

Proof. Let us verify that p* satisfies the conditions in Definition 17.

(1) Clearly p*(E) € [0, o0].

(2) 0 c (0) = p*(0)=0.

(3) For any E1, Es € P(X) such that E; C Es, we indeed have p*(Ep) <
w*(Es2) since any covering sequence of Fj is a covering sequence of Fj.

(4) Let E, be a sequence in P(X). Let ¢ > 0 be given. Then for
each n € N, there exists a sequence V,, ;. such that F, C UpenVp i and
e Y(Vak) < 1*(Bn) + 5. Then

pn (U En) < Z Z'V(Vn,k’) < Z (N*(En) + 2%) = ZN*(En) +e

neN neN keN neN neN

~— — —

The result now follows from the arbitrariness of e. O
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5 Lebesgue measure on R

In this section we construct the Lebesgue measure on R (using the Lebesgue
outer measure) and demonstrate some of its properties.

Definition 21. Let Jg be the collection of () and all open intervals in R.
Let J be the collection of all intervals in R. For an interval I in R with
endpoints a,b € R, a < b, we define I(I) = b — a. For an infinite interval 1
in R we define l(I) = co. We setl()) = 0. For a countable disjoint collection
{In : n € N} we define [(UpenIy) = >, cn((In). As in the previous section,
we set

pH(E) =inf{> y(Va): (Vu:ineN)C R, EC | Vuh
neN

and call it the Lebesgue outer measure on R. We write My, for the o-algebra
M(p}) of uj-measurable sets E € B(R) and call it the Lebesgue o-algebra
of subsets of R. Members of the o-algebra My, are called M -measurable or
Lebesgue measurable sets. We call (R, Mp) the Lebesque measurable space.
We write g, for the restriction of u7 to My, and call it the Lebesgue measure
on R. We call (R, My, pur) the Lebesgue measure space on R.

Theorem 7. pj (1) =I(I) for every interval I in R.

Proof. 1. If I is finite and closed, I = [a,b] for some a,b € R. Consider
the covering sequence ((a — €,b + €),0,0,...) in Jo for I. Tt follows that
i (1) < I(1).

Next we show that for any covering sequence (I, : n € N) in J for I,
we have

> UIn) = D). (10)

If any of the intervals is infinite, (10) holds. Thus consider the case
where every member is finite. Let us drop those members in the covering
sequence that is disjoint from I and contained in any other member of the
sequence. The resulting sequence J,, is a covering sequence of I, and since
is compact, J, has a finite subcover. Renumber the members of J, so that
Jr = (ag,by) for k=1,...,N and a; < as < ... <ay. In fact since none of
the members are contained in another, we have a1 < as < ... < ap. Let us
show that as < b1. Assume not, then since J; and Js lies in I, there exist
x1 € (a1,b1)NI and x2 € (ag,b2) NI such that a1 < 1 < by < ag < xg < by.
Note that [z, z2] C I. Since by < ag, there exists at least on point in [z, 2]
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that is not covered by (Ji,...,J,). Thus we have ay < b;. Similarly,

a1 < ag < by
ag < ag < by

an—1 < any <by_1
an < by.

We get

N
Zl =(by —a1)+ (bg—a2)+ ...+ (by —an)
k=1
>((12—CL1)—|—(CL3—CL2)—|—...—|—(()N—CLn)
=by—a;1>b—a=1().

Thus > oy I(In) > Zszl I(Jg) > I(I), establishing (10). By the definition
of infimum, (10) implies that pj (I) > I(I). Thus for any closed and finite
interval I, we have pj (I) = I(1).

2. For any open interval I = (a,b), we have

p((a,b)) < pi(la, b)) < pp({a}) + pi((a, b)) + pp({0}) = pi((a, b)),

since the Lebesgue measure of a singleton is 0. Thus 7} ((a,b)) = uj ([a,b]) =
l([av b]) = l((a, b))

3. If [ is finite and I = (a,b], pj((a,b]) < pj((a,b)) and pj ((a,b]) >
17 ((a,b)) by monotonicity. Similarly if I = [a, b).

4. If I is infinite of the type I = (a,0), a € R, then (a,o0) C (a,n) for
every n € N and thus pj ((a,00)) > uj((a,n)) = n—a. By the arbitrariness
of n e N, 7 ((a,00)) = 0o = l(a,00). Similarly for other types. O

Remark 7. From Theorem 7, one can show that every interval in R is
Lebesgue measurable. This begs the question: are all sets in R Lebesgue
measurable? As we will see, the answer is no. In practice, however, any
subset of R that we can think of will be Lebesgue measurable. This is
why we introduce the Borel o-algebra of R. Its role is so important that it
deserves a separate section.

5.1 The Borel o-algebra of R

Definition 22 (Borel o-algebra of R). The Borel o-algebra of R, written
B(R), is the o-algebra generated by the open sets in R. That is, if D is the
collection of all open sets in R, then B(R) = o(D).

Theorem 8. Fvery Borel set in R is a Lebesgue measurable set.
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Proof. Let D be the collection of all open sets in R. Since any open set
in R can be written as a union of countable many open intervals, we have

D C My, and thus U(D):BRCML. OJ

It will be useful to know that B(R) can be generated by intervals on R:

Proposition 2. The Borel o-algebra on R can be generated by any of the
following collections of intervals:

{(=00,b) : b € R}, {(—00,b] : b € R}, {(a,00):a € R}, {[a,00) : b€ R}.
By generated, we mean that for example B(R) = o({(—o0,b) : b € R}).

Remark 8. We will not prove it here, but there are Lebesgue measurable
sets on R that are not members of the Borel o-algebra on R, so the inclusion
in Theorem 8 is a true inclusion.

5.2 The invariance of the Lebesgue measure space

The Lebesgue measure on R is invariant under different transformations.

Definition 23. Let X be a linear space over the field of scalars R.
(a) For E C X and xg € X, we write

E+zy={x+z9:2z€FE}.
(b) For a € R, we write
aF ={azx:z € E}.
(¢) For a collection C of subsets of X, x € X, and o € R, we write
C+ax={E+xz:EcC}andaC={aE: EcC(C}.

Theorem 9 (Translation invariance of the Lebesgue measure space). The
Lebesgue measure space (R, My, ur) is translation invariant, that is, for
every E € My, and x € R we have E+ x € My, and pp(E + x) = pr(E).
Let My +x={E+x: Ee€ Mp}. Then My +x = My for every x € R.

Proof. Let E € My, and x € R. Let us show that F 4+ x € M, by verifying
the Caratheodory condition for £+ . (In the proof we will use that uj (E+
x) = pj (E), for every E € B(R), which is not difficult to prove.) We get

pp(AN(E +2)) + pp (AN (B + z)°)
=p(AN(E+z)—2)+pup(AN(E+2)° - z)
=pr(A—2)NE)+ pr((A—2)NE°)
= pr(A—x) = pp(A).
This shows that £ + 2 € M and therefore up(E + x) = pj (E +z) =
pi(E) = pr(E).
Now since F + x € My, for every E € My, we have My +x C M.
But My = My + (—z) + © C My + z, and we are done. O
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Theorem 10. For E € B(R) and a € R, let aF = {y € R : y =
ax for some x € E}. Then pj (aF) = |aju} (E).

Proof. Let S = (I, : n € N) be a sequence in J, and let S be the collection
of all such sequences. For a € R, a # 0, define a function M, : S — S by
setting M, (S) = aS. Clearly M, is one-to-one. For an arbitrary F € B(R),
let Sg be all sequences in S such that E C |J, ey In- Then My (Sg)= Sar
is a one-to-one mapping of Sg onto S,g, where S, is all sequences in S
such that oF C |, ey @dn-

Let A be a nonnegative extended real-valued set function on S defined
by A(S) = ,en!Un) for S = (I, : n € N). Then

AMo(9)) =D l(aly) = |a] Y 1(I) = |a|A(S).

neN neN

Now p} (E) = infges, A(S) and pf (aF) = infres, ,A(T'). But Mo (SE)
is one-to-one, so infres, ,A(T) = infges, A(Mo(S)) = infges,|a|A(S) =
la|p; (E). Thus p} (aF) = |aju) (E) when a # 0. For a = 0 the equality is
trivial. O

Theorem 11 (Positive homogeneity of the Lebesgue measure space). For
every set E € My, and a € R, we have aE € My and pr(aF) = |a|urn(E).
For every a € R, let aMp={aE : E € Mp}. Then aMp= My for every
a € R such that o # 0.

Proof. For @ = 0 the theorem is trivial. Assume therefore a@ # 0. Let
E € My, and A € B(R), then LA € B(R) and

1 1 1
T(=A)=uj(—ANE T(—ANE°). 11
Hi(-A) = HE(CANE) + pi (S AN EY) (11)
By Theorem 10,
1 1
luL(a ) ’@’ML( )7
1 1 «
(—ANE)= —us (AN —=
ML(O& ) ’a‘/J’L< E)?
ctane) = L tan ()
Ky, o - |O[|ML o .

Substituting these into (11), we get the Caratheodory condition for aF, so
that «F € M. Then by Theorem 10, ur(aF) = |a|ur(E). Since oE € My,
for every £ € My, we have aMp C M. But M = aéMg C aM;jp, and
we conclude. O
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5.3 [Existence of non Lebesgue measurable sets

Not all sets in R are Lebesgue measurable.

Let us define addition modulo 1 of z,y € [0,1) by

:C—T— _Jr+ty ite+y<l,
Y r+y—1 ifz+y>1

It is easily seen that + is commutative and associative. For E € [0, 1)

andye[0,1),letE—T—y:{z€[0,1):z:x—T—yforsome:U€E}.

Remark 9. Let E C [0,1) and E € M. It can be proven that E ¥ yeMp
and up(F i y) = ur(F) for every y € [0, 1).

Theorem 12. [0,1) C R contains a non Lebesgue measurable set.

Proof. For z,y € [0,1), let us define a equivalence relation on [0, 1) by
x ~ y if and only if z — y is a rational number.

Let {E, : a € A} be the collection of equivalence classes of ~.

Let P be the subset of [0,1) constructed by for each o € A, picking an
element from E,. Let {r, : n € Z4} be an enumeration of the rational
numbers in [0,1) with ro = 0. Let

Pn:Pj—rnfornGZ+.

Let us show that {P, : n € Z,} is a disjoint collection. Assume not.
Then for m # n, there exists © € P, N P,. Then x € P,, and = € P,, so that
T =Dpn —T— Tm = Dn —T— rp, for some pp,, p, € P. This implies that p,, — p, is
rational, so p,, ~ p,. By the construction of P, we must then have p,, = py,
implying that r,, = r,,, and then m = n; contradiction, proving that indeed
{P, :n € Z,} is disjoint. Next, let us show that

U P.=0,). (12)

nely

Let us note that since P, C [0,1) for each n € N, we trivially have
Unez, Pn C [0,1). To prove the reverse inclusion, let « € [0,1). Then
r € E, for some «. Since P contains an element from each equivalent class,
there exists p € P such that p € E,. Thus z ~ p so that « and p differ by
some rational number r,, n € Z,. If t > pthen x =p+1r, € P,. If z < p,
T=p—ryp Letryp, =1—1, € [0,1),thenx:p+rm—1:p—T—rm so that
x € Pp,. This shows that (12) holds.
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Finally, let us show that P ¢ M. Assume the contrary, then by Remark
9, P, =P+ r, e My and pur(P,) = pr(P). Thus

1=p(0. D)) =pz | U Bu| = o)=Y me(P).  (13)

n€Z+ TLEZ+ TZGZ+

If ur,(P) = 0, then (13) says 1 = 0. If ur(P) > 0, then (13) says 1 = co.
Contradiction and we conclude. O

6 Measurable functions

It is natural to develop a concept of measurable functions, that is, functions
whose preimage is measurable.

A measurable function pulls back measurable sets to measurable sets,
much like a continuous function pulls back open sets to open sets.

6.1 Measurability of functions

Definition 24 (Measurable function). Let (X,.A) and (Y, B) be measurable
spaces. A function f : X — Y is measurable if f~1(B) € A for every B € B.

Definition 25 (Measurable function on R, Borel set). If (X,.A) is a mea-
surable space, then f : X — R is measurable if f~1(B) € A for every Borel
set B € B(R).

Since B(R) = o({[—0o0,b) : b € R}) by Proposition 2, we can make the
following definition.

Definition 26 (Measurable function on R). Let (X,.A) be an arbitrary mea-
surable space and let D € A. An extended real-valued function f defined on
D is said to be A-measurable on D if {x € D : f(z) < a} € A for every
a € R.

Every real-valued continuous function is measurable:
Theorem 13. Let f : R — R be continuous. Then f is measurable.

Proof. Let O be an arbitrary open set in R. Since f is continuous, f~(O)
is open in R and then f~1(O) € Bg, since any open set in R is a countable
union of disjoint open intervals. By Theorem 8, f~1(0O) is measurable. [

Theorem 14. Fach of the following conditions are equivalent.
(a) Dy ={x € D: f(z) < a}e A for every a € R,
(b) Dy={x e D: f(x) >a} e A for every a € R,
(c) Ds={ze€D: f(x) > a}le A for every a € R,
(d) Dy ={x € D: f(z) < a} € A for every o € R.
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Proof. 1. (a) < (b). Dy and Dy partition D. Thus if D; € A then Dy =
D\ D, € A. Similarly, if Dy € A then D; € A.

2. (c) < (d) as above.

3. (d) = (a). Note that

Dlzﬂ{D:f<a+%}. (14)
neN

Now if f satisfies (d), then every intersection in (14) lies in \A.
4. (b) = (c). Note that

1
D3 = : — -4
=D f>a 1) (15)
neN
Now if f satisfies (b), every intersection in (15) lies in A. O

Theorem 15. If f is measurable, then |f| is measurable.

Proof. {z : |f(z)| < a} = {z : f(x) < a}N{x : f(zr) > —a}e A, by
Theorem 14. O
6.2 Measurability of sequences of functions

Theorem 16. Let (f, : n € N) be a sequence of measurable functions. For
r € X, put

g1(x) = sup fn(2),
neN

g2(x) = inf fu(z),

93(w) = limsup f(z),

ga(x) = hmmffn( ).

Then g; (i =1,2,3,4) are measurable.

Proof. 1. Note that

{z: g1(x) >a}:{x::1é§fn( )>al = U{x fn(z) > at. (16)

neN

Since each set in (16) is measurable, it follows that g; is measurable.
2. Similarly as above,

{z:g2(@) <o} ={u: inf fu(w) <o} = J{z: ful@) <o} (17)

neN
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3. By the definition of lim sup,

gs(w) = lim (sup fm<a:>)-

n—oo mzn

4. Similarly as above,

n—oo \ m>n

ga(z) = lim (inf fm(x)>. 0

Theorem 17. Let (f, : n € N) be a sequence of measurable functions. The
functions

min and max
n=1,....N fn n=1,...,IN fn

are measurable.

Proof. {minp—1, N fn > a} = (h_{fi > a}, {max,—1, N fn < a} =

M1 {fi < a}. O

6.3 Measurability of the positive and negative part of f

Definition 27 (Positive and negative part of f). Let f be measurable. The
positive part f+ and the negative part f~ of f are nonnegative functions
defined by

(@) = (f V 0) () = max{f(x),0}, (18)
J(@) = =(f A0)(2) = —min{ f(x), 0}. (19)

Remark 10. Note that f(z) = f*(z) — f~ ().

Proposition 3. Let f be measurable.

(a) f* and f~ are measurable.

(b) The limit of a convergent sequence of measurable functions is mea-
surable.

Proof. 1. Consider the sequence f,(z) = (fi(z) = f(z),0,0,...). By Theo-
rem 17,

max fn(z) = max{f(x),0} = f*

n=1,...,

is measurable. Likewise for f~.
2. If (fn : m € N) converges, lim and lim sup are equal. O
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6.4 Measurability of the restriction and extension of f

Lemma 6. Let (X,.A) be a measurable space.

(a) If fis an extended real-valued measurable function on a set D € A,
then for every Dy C D such that Dy € A, the restriction of f to Dy is a
measurable function on Dy.

(b) Let (D, : n € N) be a sequence in A and let D = UpenD,,. Let
f be an extended real-valued function on D. If the restriction of f to D,, is
A-measurable on D,, for every n € N, then f is A-measurable on D.

Proof. 1. {Dy: f <a}={D: f<a}nDye A
2. {D: f<a}={UpenDpn : f <a} =Upen{Dn: f <a} € A O

Proposition 4. Let (X, A, p) be a complete measure space.

(a) Every extended real-valued function f defined on a null set N is A-
measurable on N.

(b) Let f and g be two extended real-valued functions defined on a set
D € A such that f = g a.e. on D. If f is A-measurable on D then so is g.

Proof. Let us prove (b). Suppose f = g a.e. on D. Then there exists a null
set N such that N C D and f = g on D\ N. Since f is measurable on D,
it is measurable on the subset D \ N by (a) of Lemma 6. Since f = g on
D\ N, g is measurable on D\ N. But since N is a null set and the measure
space is complete, g is measurable on N by (a). Thus g is measurable on
D\ N and on N and therefore measurable on (D \ N) UN = D according
to (b) of Lemma 6. O

6.5 Almost everywhere

If a property P holds for every z € D\ A, where A is a null set, it is
customary to say that P holds almost everywhere on D.

Definition 28 (Real-valued a.e.). Let (X, A, ) be a measure space. Let f
be an extended real-valued A-measurable function on a set D € A. We say
that f is real-valued a.e. on D if there exists a null set (X, A, u) such that
N C D and f(z) € R for every x € D\ N.

Definition 29 (Existence and convergence of limit a.e.). Let (X, A, u) be
a measure space. Let (f, : n € N) be a sequence of extended real-valued
A-measurable functions on a set D € A. We say that lim,_, fn exists a.e.
(brief for almost everywhere) on D if there exists a null set (X, A, u) such
that N C D and lim,_,o fn(x) exists for every x € D\ N. We say that
(fn : n € N) converges a.e. limy,_,o f, exists and lim,_, fr, € R for every
x€D\N.

Definition 30 (Uniform convergence a.e.). Let (f, : n € N) be a sequence
of extended real-valued measurable functions on a set D € A and let f be a
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real-valued measurable function on D. We say that (f, : n € N) converges
almost uniformly on D to fif for every § > 0 there exists a measurable subset
E of D such that p(E) < § and (f,, : n € N) converges uniformly on D\ E

to f.

Theorem 18 (D.E. Egoroff). Let D € A and u(D) < co. Let (f,, : n € N)
be a sequence of extended real-valued measurable functions on D and let f be
a real-valued measurable function on D. If (f, : n € N) converges to f a.e.
on D, then (f, :n € N) converges to f almost uniformly on D.

7 The Lebesgue Integral

7.1 Simple functions and approximations

Definition 31 (Simple function). Let ¢ be a real-valued function defined on
X. If the range of ¢ is finite, we say that ¢ is a simple function.

Definition 32 (Canonical representation of a simple function). Let ¢ be a
simple function on a set D C X. Let{a; :i=1,...,n} be the set of distinct
values assumed by ¢ on D and let D; = {x € D : p(z) = a;} fori=1,...,n.
{D;:i=1,...,n} is a disjoint collection and U {D; = D. The expression

p(r) = ZailDi(x) forx € D,
i—1

1s called the canonical representation of .

The following important theorem shows that any measurable function
can be approximated from below by a sequence of simple functions. 2

Theorem 19. Let f : X — [0,00] be measurable. There exists a sequence
of real-valued simple functions s1, 82,... on X such that 0 < s1 < s < ... f,
sn(x) = f(x) pointwise.

Proof. Let us construct a sequence of simple functions 1, @9, ... that con-
verges to the identity from below. Then s, = @ o f is a sequence of simple
functions that converges to f from below.

Step 1. Let | | denote the floor function. Define ¢ : [0, 00] — [0, 00) by

onlt) = {pntj/zn, if t € [0,n),

n, if t € [n, o0].

Note that ¢, is simple and therefore measurable. Let us show ¢, < ¢y 41.
Let n € N and make a case study.

2Michael J. Fairchild, www.mikef.org/files/SimpleApproximation.pdf, retrieved 2016-
03-17.
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(i) If t € [0,n), then
pn(t) = (2] /2" = 2(27t] /271 < (2718 /27T = g (8),

where we have used that n|t| < [nt|. (This can be proven by induction and
using the fact that if a < b then |a] < [b]. Idea proof: |a] < a < b, and
|b] < b. Thus |a] and |b] are two integers not exceeding b, and so by the
definition of floor, |a] < |b].)

(i) If t € [n,n+ 1), then

on(t) =n < [t] = 27F[t] /27T < (271 /27T < g ().
(73) If t € [n + 1, 00], then
on(t) =n<n+1=pp1(t).

This shows that for all ¢ € [0, 00] we have 0 < ¢1(t) < pa(t) < ... <t

We show next that ¢, (t) — t for t € [0,00]. If t € [0,00), then 2"t — 1 <
|2"t] and therefore % < %tfj, implying ¢ — 2% < Lz;ﬂ. If n > t, then
t — 5= < ¢u(t) < t. This implies ¢, () — t for t € [0,00). Lastly, if t = oo
then ¢, (t) = co. Thus ¢, (t) — ¢t for t € [0, o0].

Step 2. s, : X — [0,00) defined by s, = o f is simple and measurable,
and 0 < sp(z) = en(f(x)) < ont1(f(z)) = Spt1(x). Moreover s,(z) =
on(f(z)) < f(z), since f(z) € [0, 0], proving the first part of the theorem.

Lastly, 5,(x) = @a(f(x)) = f(x). O

7.2 Integration of simple functions

Definition 33 (Lebesgue integral of a simple function). Let ¢ = > " | a;1p,
be the canonical representation of a simple function on a set D € A. The
Lebesgue integral of ¢ on D with respect to p is defined by

| el ntdn) = Y- an(D)
b i=1
or, briefly,

/D pdu=">aiu(D;).
i=1

7.3 Integration of nonnegative functions

Definition 34 (Lebesgue integral of a nonnegative function). Let f be mea-
surable and nonnegative on a set D. We define the Lebesgue integral on D
with respect to p by

/Dfdu=sup{/Dsodu:<p€<1>},

where @ is the collection of all simple functions ¢ such that 0 < ¢ < f.
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7.4 Integration of measurable functions

Definition 35 (Lebesgue integral). Let f be measurable on a set D. If at
least one of the integrals [, f+du and [, f~ du are finite, we define

wazlgﬂméfwM

If both integrals are finite, we say that f is integrable on D in the Lebesgue
sense, with respect to p, and write f € L(p). (Note that p need not be the
Lebesgue measure.)

7.5 Properties of the Lebesgue integral
Remark 11. Let f be a function.

(a) If f is measurable and bounded on D, and if (D) < oo, then f € L(u)
on D.

(b) If a < f(x) <bfor x € D and u(D) < oo, then
on(D) < [ fdn<ou(D)
(c) If fand g € L(p) on D, and if f(z) < g(x) for z € D, then

Afmséﬂm.

(d) If f € L(n) on D, then c¢f € L(u) on D, for every finite constant c,

and
C/Dfdu:/Dcfd,u.

(e) If u(D) =0 and f is measurable, then

| rau=o

(f) It feL(u)on D, Ae A and A C D, then f € L(u) on A.

Proof. Let us prove (¢). Firstly, let f; and f2 be nonnegative and measurable
functions on a set D with f; < fo. We claim that

Ah@ﬁéhm. (20)
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Indeed, for i = 1 and 2, let ®; be the collection of all nonnegative simple
functions ¢ on D such that 0 < ¢ < f;. Since 0 < ¢ < f1 < fo on D, we
have ®; C ®5. Then

{/ @durtpeél}c{/ pdu: g € Oa}.
D D
Let
512{/ pdp € P},
D
522{/ wdp:p € Po}.
D
Let Us be any upper bound to Sy. Since S; C So, Us is an upper bound

to Sp too. In particular, then, sup S5 is an upper bound to .Sj.
But sup 57 is the smallest upper bound to Sq, so

sup S1 < sup Sy,

/DfldMS/szdM-

This proves (20). Note that the result now follows since

[tau=[ rrau- [ rans [ gtan- [ o= [ gan O

Theorem 20. (a) Suppose fis measurable and nonnegative on X. For A €

A, define

or,

o(A) = /Afdu.

Then v is countably additive on A.
(b) The same conclusion holds if f is Lebesque measurable on X.

Proof. 1. Let (A : n € N) be a disjoint sequence in A with A = (J,, oy An-
To prove (a), we have to show that

v(A) =) v(Ay). (21)

neN

Suppose f is the characteristic function on a set D C X. Then
v(A) :/ fdp=1-p(AND)+0-pu(AND°) =pu(AND),
A

and since p is countably additive, v is too.
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Suppose f is simple, and let f =", a;,1p, be its canonical represen-
tation.

Since {D;NA,:i=1,...,m} is a disjoint collection with J;",(D;NA) =
A, the restriction of ¢ to A is given by

m
p= Z a;lp,nA-
i=1

Therefore

_/Afd'u_Zai,u(DiﬂA)—ZGiZM(DimAn)
i=1 i=1 neN
:Z[Zam(pmfl Z/ fdp = ( n)y

neN

neN =1 neN

where the fourth equality can be proven by induction.
In the general case, thus, we have that for every measurable simple
function ¢ such that 0 < ¢ < f,

/wdu Z/ M<Z/ fdp =" v(An). (22)
neN neN neN

Then by definition of the Lebesgue integral as a supremum,

o) = [ Fdu< Y o
neN

Therefore, in order to establish (21), it remains to be shown that
O e
neN

If v(A,) = oo for some n € N, then v(A) > > >, v(A,) because

:/Afduz/Anfduzv(An%

and f is nonnegative. Note that Y 7, v(Ay) = oo, also because f is non-
negative. Thus v(A) > > > v(A,) reads oo > oo.
In the case were v(A;) = oo for some n € N, (21) is thus established.
Suppose v(A4,) < oo for every n € N. Given € > 0, we can choose a
measurable function ¢ with 0 < ¢ < f such that

/sodﬂz/ fdu—e, /sodMS/ fdp—e. (23)
Ay Aq Az Az
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Hence
Ay = [ fdpz [ pdu= [ edus [ edn
A1UAo A1UA5 Ay Az
Z U(Al) +U(A2) — 26,

where we in the second equality used (22). By the arbitrariness of €, this
shows that
U(Al U Ag) > U(Al) + U(AQ).

From this it follows that for every n € N,
v(AjU...UA,) >v(4)) + ...+ v(Ay). (24)

Since A D A; U...UA,, (24) implies

v(A) =) v(Ay).

neN

:/AfduzfAf*du—/Afdu,

and see that (b) follows from (a).

Let A = A; U Ay. We will prove that v(A; U As) = v(A1) + v(As).
(From this the countable additivity follows by induction.) Indeed, if f is
measurable then f* and f~ are measurable and nonnegative, so that

/f*dwr Frdu— ( I du+/ s du)
Az

= [ rran- [ 1 du+</ rran- [ 1 in)

= U(Al) +’U(A2 O

2. Let us write

Corollary 1. v(A) is a measure.

Corollary 2. If Ac A, BC A, and n(A\ B) =0, then

/Afduz/deu-

Proof. By Theorem 20 and (e) of Remark 11,
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Theorem 21. If f € L(u) on E, then |f| € L(u) on E and

d du.
EfMS/E!f\u

Proof. Write E = AU B, where f(z) >0 on A and f(z) < 0on B. Then A
and B partitions E so by (b) of Theorem 20,

[istan= [ \ridns [ ifidu=[ gt aus [ 5de

But AC Fand A€ A, so f € L(u) on A by (f) of Remark 11, implying

that
/ fHdu < .
A

/ fdp < oo
B
This shows that |f| € L(p).
For the last part, note that since f < |f| and —f < |f], for all z € E,

/f@</UWu—Aj@=LPﬂWSAWW7

where we have used (c) and (d) of Remark 11. O

Similarly,

Theorem 22. Suppose f is measurable on E, |f| < g, and g € L(u) on E.
Then f € L(u) on E.

Proof. Note that |f| < g on FE implies f* < gand f~ < gon E. Then

/f+du</gdu<oo7
E E
and
/fdﬂ</gdu<oo,
E E
implying that f € £(u) on E. O

7.6 Convergence theorems

Theorem 23 (Lebesgue’s monotone convergence theorem). Suppose E € A.
Let (f, : n € N) be a sequence of measurable functions such that

0< fiz) < folx) <..., z€E. (25)
Let f be defined by
f(z)= lim f,(x), z€E.

n—o0

lim/fndu:/fdu.
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In particular, if f,, € £(u) is nondecreasing and f,, — f pointwise, then
f € L(u). As we will se, this is not true in the Riemann sense.

Proof. Since (f, : n € N) is an increasing sequence of nonnegative functions,
lim x

exists in [0, 00) for every « € E and thus f is measurable by Theorem 16.
Since f, < f on E, we have

anséﬁm

by (c) of Remark 11. Also f,, < fn41 implies

/fndué/ Jn+1dp,
E E

and thus ([ fndp : n € N) is an increasing sequence bounded above by
[ f dp. Consequently,

lim nws/fm. (26)

Choose ¢ such that 0 < ¢ < 1. Let ¢ be a simple measurable function
such that 0 < ¢ < f. Put

E,={z € E: fo(x) > cp(x)}, neN.

Since (f, : n € N) is an increasing sequence, f,(x) > cs(x) implies
frnt1(x) > cp(x), and therefore (E, : n € N) is an increasing sequence.
Since FE,, C E for every n € N, we have

U E.cE. (27)

In fact, the reverse inclusion of (27) also holds, that is,

UE.oE. (28)
neN

To prove this, let us show that if x € E then x € E,, for some n € N. Let
therefore z € E. If f(z) = 0, then since ¢ < f we have p(z) = 0 and then
trivially x € E,, for some n € N since f,(x) > cp(x) =0 and f,(z) > 0.

Suppose f(xz) # 0. Since 0 < f,, < fand 0 < ¢ < 1, we have f(z) >
cp(z). Since fn(x) T f(x), there exists N € N, depending on z, such that
fn(x) > cp(x). Thus z € En, so that (28) is established. This implies that

U E.=E. (29)

neN
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Let us define a set function v on A by setting

v(A) = /Awdm

for every A € A. By Theorem 20, v is countably additive and thus a measure
on X.

For every n € N, since £ D F,, and f,, > cp on E,, we have

[ wdnz [ faduze [ odn=colr). (30)
E E, En
Since (Ey, : n € N) is an increasing sequence, we have

lim E, = U E.=E,
neN

where the last equality comes from (29). Then by Theorem 2, we have

lim v(E,) =v(lim E,) =v(E).

n—oo n—o0

Letting n — oo in (30), we then see that

lim [ f,du>c lim v(E,) = cu(E).

n—oo E n—

Since this holds for every 0 < ¢ < 1, letting ¢ — 1, we get

i [ fuduzo(B) = [ pdp. (31)
E E

n—oo

Since (31) holds for an arbitrary nonnegative simple function ¢ on E
such that 0 < ¢ < f, and since f is nonnegative, we have

lim [ fodu> sup /soduz/fdu-
n= g 0<p<fJE E

Combining this inequality with that of (26), we are done. O

Theorem 24. Suppose f = f1 + fo where f; € L(u) on E (i =1,2). Then

feL(p) on E, and
[rau=[ fiau+ [ podn

Proof. Suppose first that f; >0, fo > 0. If f; and f are simple, the result
follows immediately. Otherwise, choose monotonically increasing sequences
(s;l), (s;;) of nonnegative measurable simple functions which converge to fi,
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f2. By Theorem 19, this is possible. Put s, = s;l + s;;. Then by Theorem

20
/sndu—/s;du—i-/s;;d,u,
E E E

and letting n — oo and applying Theorem 23 the result follows.
Next, suppose f1 > 0, fo < 0. Put

A={z: f(x)>0}, B={z:f(x) <0}
Then f; and — f2 are nonnegative on A. Hence
Jonan= [+ can= [ gans [ rya= [ ra- /Af2(du),
32

where we have used Theorem 20.
Similarly, —f, fi1 and — fy are nonnegative on B, so that

/B(—f2)d/£:/Bf1dM+/B(—f)d%

/Bflduz/deu—/szdﬂ. (33)

Adding (32) and (33), we get

/Af1du+/Bf1du=Afdu—Afzdu+/jgfdu—/jBf2du7

or, again using Theorem 20,

/Eflduz/Efdu—/Efzdu-

In the general case, F can be decomposed into four pairwise disjoint sets
E; where fi(x) and fa(z) have constant sign, and we proceed as above. []

or,

Corollary 3. Suppose E € M. If (fn : n € N) is a sequence of nonnegative
measurable functions and

f@) =3 ful@), (zeB),
n=1

then

/Efduzg/]ﬂfndu-
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Proof. By Theorem 24, for any finite n € N, we have

/Ejzn;fj(x)duzjzn;/bﬂfj(x)du.

Since (Z?Zl fj + 7 € N) is a monotonically increasing sequence, Theorem
23 yields

n

I S [ p@dn= [ lin 3 f@) du =

Jj=1

Theorem 25 (Fatou’s theorem). Suppose E € M. If (f, : n € N) is a
sequence of nonnegative measurable functions and

f(x) = inf fu(z), (z€F),

n—oo
then
/fduﬁ inf [ fndp.
E n—oo E

Proof. By definition,

inf f, = lim <inf fk>

n—00 n—oo \ k>n

Since (infg>, fr : n € N) is a increasing sequence of nonnegative func-
tions, Theorem 23 may be applied and

[t = [ (gt )
=t [ (s ) o

§/ inf f,du. O
E

n—oo
We have now arrived at the most important theorem in this paper.

Theorem 26 (Lebesgue’s dominated convergence theorem). Suppose E €
A. Let (fn :n € N) be a sequence of measurable functions such that

fo(@) = f(z), (z€E)
as n — oco. If there exists a function g € L(u) on E such that

then
lim/fndu:/fdu.
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Proof. Since f, + g > 0, Fatou’s theorem shows that

/ (f +9)du < nmmf/ (Fu+ ) di,

or,
/ fdu < liminf/ fndu,
E n—o0 E
Similarly g — f,, > 0, so by Fatou’s,
[ o= <timint [ (g ) d
E n—ee JE
or,
—/ fdp <liminf <—/ fndu> ,
E n—oo E
or
fdp >1lim sup/ fndu.
E n—oo JE
Thus
fduzlimsup/fnd,uZIiminf/ fnd,uZ/fd,u. O
E n—oo JE n—oo Jp E

Theorem 27 (Bounded convergence theorem). Let (f, : n € N) be a
uniformly bounded sequence of real-valued measurable functions a on a set
D € A with (D) < oo. Let f a bounded real-valued measurable function on
D. If (fn : n € N) converges to f a.e. on D, then

i [ 14~ fldu=0, (34)
n—o0 D

and in particular
lim / fndp = / fdu. (35)

Proof. Since (f, : n € N) is uniformly bounded on D, there exists M > 0
such that |f,(z)| < M for all z € D. Since f also is bounded on D, we may
choose M so that |f(x)| < M for all x € D. Since (f,, : n € N) converges to
fa.e. on D and pu(D) < oo, we may apply Theorem 18. According to this
theorem, for every ¢ > 0 there exists a measurable subset E of D such that
u(E) < 6 and such that (f, : n € N) converges to f uniformly on D \ E,
that is, for every e > 0 there exists N € N such that |f,(x) — f(z)| < € for
all z € D\ E whenever n > N. Then

/D|fn—f|duz/D\E|fn—f|d,u+/E|fn—f|d,u:/D\Eed,u+/EQMd,u
<eu(D\ E)+2Mp(E) < ep(D) +2MS6.
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Since this holds for all n > N, we have

sup [ |f— fldu < en(D) + 215
n>N J D

which implies
hm sup / |fn — fldp < eu(D) + 2Mo,
n—=00 iy >n

or,

n—oo

limsup/ |fr — fldp < ep(D) +2Mo6.
D

By the arbitrariness of of € > 0 and § > 0, this implies

limsup/ | fro— fldu = 0.
D

n—oo

Now since fD |fn— fldu > 0 for every n € N; we have

liminf/ |fro— fldu > 0.

Then
OSIiminf/ |fn—f|d,u§limsup/ |fn— fldu =0,
D n—oo JD

n—oo

showing (60).
Let us note that (61) can be derived from (60). Indeed,

[ - /NM\/ ~Nul < [ 1= fldw G0

The equalities in (36) may need justification. For the first one, note
that since f,, and f are measurable and bounded, and p(D) < oo, we have
fn, [ € L(u) by Remark 11 (a). Then —f, € L(u) by (d) of the same
Remark. We then use Theorem 24. For the last equality, we use Theorem
21.

Applying (60) to the right most member of (36), we get

i | [ fudn— [ fdul =0
This shows (61). O

Lemma 7. Let (X, A, ) be a measure space. Let f and g be bounded real-
valued measurable functions on a set D € A with (D) < oo.

(a) If f >0 a.e. on D and [, fdu =0, then f =0 a.e. on D.

(b) If f < g a.e. on D and [, fdu= [, gdp, then f =g a.e. on D.
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Proof. 1. Suppose f > 0 on D. Let
Dy={zxeD: f(x)=0}and D; ={z € D: f(x) > 0}.
Let us show that
f=0ae. onD < pu(Dy)=0. (37)

Suppose f = 0 a.e. on D. Then there exists a null set £ such that £ C D
and f =0on D\ E. Then D\ E C Dy = D\ Dy, so that D; C E and
u(Dy) = 0.

Conversely suppose u(D1) = 0, then Dy C D is a null set and f = 0 on
Do =D\ Dy, so that f =0 a.e. on D. Thus (37) is established.

Before proceeding, let us note that if u(D) = 0, then [, fdyu = 0 and
u(D1) = 0 so that f = 0 a.e. on D by (37). So in order to show (a) may
assume (D) > 0.

To show that f = 0 a.e. on D, assume the contrary. By (37) this implies
w(D1) > 0. Now

D1:{D:f>0}:U{D:f2%,
keN

so that

0<u(D1)§Zu{D:f2% :
keN

This implies that there exists kg € N such that

1
p{D:f>—}>0.
ko
Let us define a simple function ¢ on D by

olz) = % forazG{D:fE%},
0 forxeD\{D:fZ%}.

Then clearly ¢ < f on D and
1 1
fdp > god,u:k—u{D:ka—}>0;
D D 0 0
a contradiction to the assumption that [, fdu = 0. Therefore f = 0 a.e.
on D.

Consider finally the general case where f > 0 a.e. on D and [, fdu = 0.
Then there exists a null set E such that £ C D and f > 0on D\ E, and

0=/Dfdu=/Efdu+/D\Efdu= [T
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This shows that f > 0 on D\ E and fD\Efdu = 0. But then f =0 a.e.

on D\ E by our result above. Thus there exists a null set F' such that
F Cc D\ E and such that f=0on (D\ E)\F =D\ (FUF). Thus f =0
a.e. on D.

2. If f < gae. onD,theng—f >0a.e. onD. Ifalso [, fdu= [, gdpu,
then [,(g — f)dp =0. Then by (a), g — f =0 a.e. on D. O

8 Comparison with the Riemann integral

8.1 Riemann integrability

Definition 36 (Darboux sums, Darboux integrals). Let f : [a,b] — R be a
bounded function. Suppose |f(x)| < M for x € I = [a,b] for some M > 0.
Let B be the collection of all partitions of 1. With P € B given by P =

{®o, ..., o}, let Iy = w1, k), my = infyey, f(x) and My, = sup,¢q, f(z)
for k=1,...,n. The lower and upper Darboux sums of f corresponding to
the partition P are defined by

S(f,P)=>Y_mil(Iy) and S(f,P)="Y_ Ml(Iy).
k=1 k=1

Let

S(f) = swp S(1.P) and S(f) = Inf S(/.P).

We call S(f) and S(f) the lower and upper Darbouz integrals of f on I.

Definition 37. A bounded real-valued function f on I = [a,b] C R is Rie-
mann integrable on I if and only if

S(f) = S(f).

In this case we set

b
/ f(x)de == S(f) = S(f).

Theorem 28. If fis a continuous real-valued function on I = [a,b], then
S(f) = S5(f) and consequently f is Riemann integrable on I.

Proof. 1f f is continuous on the compact set I, it is uniformly continuous
on I. Thus for every € > 0 there exists § > 0 such that for all z,z” € [a, b],
€
b—a

Let Py € B be such that |Py| < 0. Let Py = {xo,...,z,} where a =
o < ...< x, = b. In preceding, let us note that (38) implies

|z — 2" <6 = |f(a) - fa")] <

(38)

€

sup f— inf f<

[Zg—1,7k] [Tr—1,2k] b—a

(39)
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Indeed, let o, B € [zg—1,21]. By (38),

Flo) - 1) < ——.
Fla) < <+ £(8).
Then
I €
[Tk, Tp—1] < Y a + f(8). (40)

Thus the right hand side of (40) is an upper bound to [z, x—1] f. But
SUP[y, 2, _,] f 18 the smallest upper bound to [Tk, xp—1] f, so

€

Ty ) (a1)
[Tk, 2k—1] —a
Rewriting (41), we have
sup  f — < f(B). (42)
(@K, —1] b—a

Thus the left hand side of (42) is a lower bound to [z, xk—1] f, and since
inf[xg, zx_1] f is the largest such lower bound,

sup f- < nf f,

[ThesTr—1] [Tk 2k—1]

establishing (39). Then

S(f,Po) — S(f, Po) = Z ( sup f— inf ]f) (xp — Tp—1) (43)
k

1 \lzke—1,2] [Tk—1,7k
€

_a(b—a) =e. (44)

<

By a similar argument as above, we see that (43) implies

inf S(f,P) —sup S(f,P) <e. (45)
PeB PeB

By the arbitrariness of € > 0, (45) implies

Inf S(f,P) =S(f) = S(f) = ;té%ﬁ(f, P).

This shows that f is Riemann integrable on I by Definition 37. O
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8.2 The upper and lower envelope integrals

Definition 38 (Limit inferior, limit superior of f). For g € R and § > 0,
let
U(aj(), (5) = (xo - (5, To + 5),

and
Uo(.CE(), 5) = (xo — 5, xo + (5) \ {:Co}

Let f be an extended real-valued function on a set D € R and let zg € D.
The limit inferior and limit superior of f as x approaches xqg are defined by

liminf f(z) = %im inf  f and limsup f(z)=lm sup f.

T—20 —0 Up(0,6)ND T 6=0 Uy (x0,0)ND
We have
. . f(xo) € ]R,
f is continuous at xo < liminf f(z) = limsup f(z) = f(0).
T—x0 T—x0

Definition 39 (Lower and upper envelope). Let f be an extended real-valued
function on a set D € R. Let zg € D. We define the lower envelope and
upper envelope of f at xg by
=1 inf d f* =i .
fe(zo) = lim . (xfg)mf and  f*(zo) = lim Uo(iﬁép)wf

Remark 12. For an extended real-valued function f on a set D C R and
for zg € D,

fe(wo) < liminf f(z) < lim sup f(@) < f*(@o). (46)
felwo) < flzo) < f* (o). (47)

f(zo) € R,
fe(zo) = [ (@0).
Proof. Let us prove (48), since (46) and (47) follows directly from the defi-
nition.

Suppose f is continuous at xg € D. Then for every € > 0 there exists
d > 0 such that for all z € U(zg,d) N D,

f(xo) —e < flz) < f(wo) + €.
Note that the first of these inequalities implies
f(zo) —e< inf  f(z).

U(xo,(s)ﬂD

f is continuous at zy < { (48)
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Now since inf(z, 5)np f(*) T as 0 | 0 (as the infimum is taken over a
smaller set), we have

—e< inf < 1i inf < folzo). 49
flzg) —e< U(xglé)mf(w) < lim U<xt?5)me<x) < fi(zo) (49)

By a similar argument we show
[ (xo) < f(zo) + €. (50)

If we then combine (49) and (50), we get f*(z¢) — f«(xo) < 2¢. Since
€ > 0 was chosen arbitrarily, we have f.(xo) = f*(zo).
Conversely, if f(xzo) € R and fi(xo) = f*(z0), then

fe(@o) = f*(z0) = f(20)
by (47). Then by (46),

liminf f(z) = limsup f(z) = f(xo),

T—=To T—x0
proving the continuity of f at xg. O
Lemma 8. Let f be a bounded real-valued function on I = [a,b]. Then

f]f*du :ﬁ(f) and f[f*dN:§(f)
Proof. Let us prove [, f*dur = S(f). (The equality J; fedpr = S(f) is
proved similarly.) Consider the upper Darboux integral of f on I,
S(f) = inf S .
S(f) = jnf S(f,P)
By how infimum is defined, for every m € N, there exists P, € B such that

5(f) < S(f. Pum) < S(f) + —. (51)

m

For the sequence of partitions (P, : m € N), we then have

lim S(f) = S(f, P). (52)
n—,oo
If necessary, let us add partition points to P, so that |Py,| < % Note that
this not affect the validity of (51) and (52), since refining a partition does
not increase the upper Darboux sum.

Let P, = {ZmisTmys .-, Tm, } and let Ip = [@y, ,, T, | for k =
1,...,n. For each m € N, define a function ¢,, on I by
n
Y=Y supf-1p,,. (53)
k=1 Tm#
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Let E be the countable set consisting of all partition points in (P, : m €
N), that is,
(Pm Tm e N) = (:1311,1‘22, .. )

Let us show that

lim ¥, (x) = f*(z), forzell\E. (54)
m—0o0
Let o € I\ E. Then for each m € N there exists a subinterval in P,
which contain xg in the open interval between two partitions points, that is,
for each m € N there exists k € N, 1 < k < my, such that zg € Ifnk.
Pick a ¢’ > 0 so small that for all m > M’, where M’ € N, we have
U(xo,d') C I, . Then

f(xo) =lm sup f< sup f <supf <supf=tn(ro), (55)
6=07 (20,5) U(w0,8") Ig,, Iy,

where each inequality comes from the fact that we take the sup over succes-
sively greater sets, and the last equality from how we defined .

Since supy (g, s)nr f 7shrinks” from above to f*(zo) as § | 0, we have
that for an arbitrary € > 0 there exists § > 0 such that

| sup  f—f(zo)l= sup f— f*(w0)<e.
U(wo,6)ﬂ] U((E(),(;)QI

By the same reason,

sup [ > f*(xo).
U(zo,0)NI

Combining these two inequalities, we get

fr(@o) < sup  f < fH(xo) +e. (56)
U(zo,0)NI

Since [Pp| — 0 as m — oo and since z¢ € I, for some k € N for every
m € N, there exists M > 0 such that for m > M,

I, € Ulwo,8) N 1. (57)
Let N = max(M, M), then by (55), (57), and (56), we have that for all

m> N

[ (w0) < Pm(xo) =supf < sup f < fH(wo)+e
Imk U(.Z’(),d)m]

proving (54).
Consider the sequence of simple functions (¢, : m € N) defined by (53).
Then

/lwm dpi— Ziupf A(Im,.) = S(f, Prm);

k=1 1mg
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the upper Darboux sum of f corresponding to P,,. Then by (52),

lim ’ U dpe = S(f). (58)

n—oo

Since f is bounded on I, we have |f(z)| < M on I for some M > 0.
Then by (53), we have |[¢,(x)| < M. By (54), we have that 1, converges
to f* a.e. on I. Then by Theorem 32,

lim [ ¢, dp = /f* dp. (59)
By combining (58) and (59), we have

/If*dMZS(f)- O

Lemma 9. Let (X, A, u) be a measure space. Let fi and fo be bounded
real-valued measurable functions on a set D € A with u(D) < oo. If fi = fo

a.e. on D, then
/flvd:u:/de:u'
D D

8.3 Riemann integrability and Lebesgue integrability

Theorem 29. Let f be a bounded real-valued function on I = [a,b]. If f is
Riemann integrable on I, then f is My -measurable and Lebesgue integrable

on I and moreover )
|tz = [ ran

Proof. If f is Riemann integrable on I, then S(f) = S(f) by Definition 37.

By Lemma 8§,
I I

Since fy and f* are Bg-measurable on I, they are M -measurable on [
by Theorem 8. Since f, < f* and their Lebesgue integrals are equal, f, = f*
a.e. on I by (b) of Lemma 7. Since f, < f < f* by Remark 12, we have
f = f«= f*ae. on I. Since the Lebesgue measure space is complete, f is
Lebesgue measurable on I by (b) of Remark 4.

Since f is Lebesgue measurable and f = f* a.e. on I, we have fI fdu=

f[ f*dp by Lemma 9. But by Lemma 8 and Definition 37,
B b
[ran=3)= [ 1@
Thus [ f(z)dz = [, f dp. O
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8.4 Lebesgue’s integrability condition

Theorem 30. Let f be bounded real-valued function on I = [a,b] and let E
be the set of all points of discontinuity of f in I. Then

f is Riemann integrable on I
=
fe=[% ae onl
=
pr(E) = 0.

Proof. 1. If f is Riemann integrable on I, f, = f* a.e. as seen above.
If f = f* a.e. on I, then by Lemma 9,

/If*dMZ/If*du,

implying Riemann integrability by Definition 37 and Theorem 8.

2. By Remark 12 we have that f is continuous at xzg € I if and only if
fe(x0) = f*(x0). Then f* = f, on I\ E’ for some null set E’ if and only if f
is continuous on I \ E’ for some set null E’ if and only if f is discontinuous
at E’ for some set null E’ if and only if £/ = E. O

8.5 Where Riemann falls short

In a Riemann setting, uniform convergence tells us that we are allowed to
switch places between the integral and the limit.

Theorem 31 (Uniform Convergence and Integration in the Riemann sense).
Let (fn(z) : n € N) be a sequence of continuous functions defined on the
interval [a,b] and assume that f, converges uniformly to a function f. Then
f is Riemann-integrable and

n—o0

b b
lim fn(x) d:l::/ f(x) dx.

Proof. Since the f,’s are continuous and converge uniformly to f, the limit
function must be continuous. By Theorem 28, f is Riemann-integrable and

b b

fn(x)dx — f(x)dx

b

< [ |fa@) = f2)]dx

a

< (b—a)sup|fn(z) — f(z)| = 0. -

<

b b
/ fn(x)dx — f(x)dx
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Note that Theorem 31 does not say —(uniform) = —(interchange). How-
ever in practice, to be sure that interchanging is justified it is uniform con-
vergence that we check.

Even when the sequence is uniformly bounded, pointwise convergence is
not enough. Recall the Bounded convergence theorem:

Theorem 32 (Bounded convergence theorem). Let (f, : n € N) be a
uniformly bounded sequence of real-valued measurable functions a on a set
D € A with u(D) < oo. Let f a bounded real-valued measurable function on
D. If (fn : n € N) converges to f a.e. on D, then

i, [ £ = fldu=0, (60)
n—oo D

and in particular
lim frndp = / fdu. (61)

The bounded convergence theorem does not hold in a Riemann setting.
We will prove this in Proposition 5, but first we need the following Lemma.

Lemma 10. Let f be the Dirichlet function on [0, 1], that is,

0, otherwise,

1, if T is rational,
-

for all x € [0,1].
f is not Riemann integrable on [0, 1].

Proof. Take an arbitrary partition P = {xg, x1,...,2,} of the interval [0, 1].
Between any two points x; and x;41 there exists an irrational number.
Therefore the inf over [z, ;1] is 0, so that

S(f)=sup S(f,P)=0.
PeB

Between any two points x; and x;4; there exists a rational number.
Therefore the sup over [z, x;41] must be 1. This means that

S(f,P) =) 1+ (wx — wx1)
k=1

=(r1—xo)+ (xa—x1) + ... + (T — Tp—1)
=z,—290=1—-0=1,

so that
S(f) = inf S =1
(f) = inf S(f,P)
Then by Definition 37, f is not Riemann integrable. O
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Proposition 5. There exists a uniformly bounded sequence (f, : n € N)
of real-valued functions defined on the set [0,1] that converges to a bounded
function f, but where

lim fn dx;é/ hm fndx. (62)

n—oo

Proof. Let f be the Dirichlet function on [0,1]. Then f is clearly bounded.
Let {r,}72; be any enumeration of the rationals in [0, 1], and define

1, ifx=rg, forsomel <k <mn,
fn(zc) :{

0, otherwise.

Then (f,,) is uniformly bounded by 1, and it converges pointwise to f.

Moreover,
1
a4 Jy Il de =1
However f is not Riemann 1ntegrable by Lemma 10, so (62) holds. O

8.6 Some examples of how to use the Lebesgue integral

Example 2. Compute

L |
lim
n—oo Jo nx + 1

dp.

Solution. Let f,(x) = mH, then fp(z) — 0 and |f,(x)| < g(z) =1 for all
x € [0,1] and for all n € N. Since g is continuous and bounded on [0, 1], it
is Lebesgue integrable on [0, 1] by Theorem 28 and 29.

Therefore the integral is equal to 0. |

Remark 13. Note that in the Riemann sense, we could not so easily be
sure of the equality

lim

1 1
dy = / lim dyt.
n—oo Jq nr+1 o n—roo nr+1

One way of being sure, is to know that (f,(z)) converges uniformly to 0
and then use [0,1] Theorem 31. The problem is, it doesn’t:

(To see this, note that |f,(z)| < 1, so 1 is an upper bound to |f,(z)|. Now
since f,(0) = 1, it is indeed the smallest upper bound.)

For the next example we will need the following result.
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Proposition 6. Let f,(z) = (1+£)", z € [0,00).
Then (fy) is non-decreasing.

Proof. Fix x € [0,00) and take 1 =1, 22 = 23 = ... = Tpy1 = 1+ T in the
AM-GM inequality

T1+ ...+ Tyt

YT T S

n+1
Then .
T\ miT
(1+5)™ <1+ =,
n n+1
proving fn(x) < fn-i—l (‘T) O
Example 3. Compute
o n
lim (1 + E) e 2% dp.
n—oo Jq n

Solution. Let fn(z) = (14 £)" e, then each f, is measurable by Theo-
rem 13, and
0< filz) < fo(x) < ..., x€]0,00),

since (1 + %)n — €%, monotonically, from below, by Proposition 6.
By Lebesgue’s monotone convergence, the integral is equal to 1. |
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