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A Degenerate Extreme Point Strategy
for the Classification of Linear Constraints
as Redundant or Necessary’
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Abstract. This paper presents a degenerate extreme point strategy for
active set algorithms which classify linear constraints as either redundant
or necessary. The strategy makes use of an efficient method for classify-
ing constraints active at degenerate extreme points. Numerical resulis
indicate that significant savings in the computational effort required to
classify the constraints can be achieved.
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1. Introduction

This paper presents a degenerate extreme point strategy for active set
algorithms which classify linear constraints as either redundant or necessary.
The importance of being able to detect redundant constraints has been well
established in Ref. 1. Not only does the elimination of all redundant
constraints reduce the computational effort required to solve an associated
mathematical programming problem, but it also provides insight into the
mathematical model represented by the inequalities. Reference 1 also pro-
vides an extensive survey of the literature on redundancy. A brief summary
follows.
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The first paper devoted entirely to redundancy was given by Boot (Ref.
2). Later, Zionts [Ref. 3; see also the closely related paper by Thomson et
al. (Ref. 4)] improved on the implementation of Boot’s method by adding
tests which could immediately identify redundant constraints. Gal (Ref. 5)
and Telgen (Ref. 6) continued the approach by adding rules for immediately
identifying necessary constraints and rules for dealing with degeneracy. The
algorithm presented in this paper can be categorized with the algorithms
of Rubin (Ref. 7), Telgen (Ref. 6), Gal (Ref. 5), and Zionts and Wallenius
(Ref. 8). The algorithms are equivalent in that: they classify all constraints
as redundant or necessary; they produce results that are unconditionally
correct; they perform iterations of an active set linear programming
algorithm [for example, the simplex method {Ref. 9) or the Best-Ritter
method (Ref. 10)]; and they use tests which may immediately classify
constraints.

The algorithm presented below is an extension of the above algorithms
in that it implements a degenerate extreme point strategy (DEPS). The
strategy is to immediately eliminate redundancy at degenerate extreme
points that are encountered during the classification algorithm.

As noted in Ref. 1, redundant constraints may cause degeneracy, which
in turn may cause near-cycling (Ref. 4). The intent of the strategy is to
eliminate near-cycling during the classification algorithm. This could result
in significant computational savings, since a given extreme point may be
encountered more than once during constraint classification.

The strategy makes use of a new procedure for removing redundancy
at extreme points. This procedure, which will be referred to as DEPS, results
in further computational savings, since it considers simple regions (they
have at most one extreme point), defined only by the constraints that are
active. Indeed, numerical results show that the strategy, implemented with
DEPS, can produce significant savings in the computational effort required
to classify the constraints.

2. Problem Formulation, Definitions, and Notation
This paper is concerned with the set of linear constraints that represent
the region R, where
R={xeR"|a]x=b,icl},
and where I={1,...., m}.°> The region represented by all but the kth

% Equality constraints are omitted from the discussion, since they are handled in a straightfor-
ward manner. See Ref. 10, pp. 281-288.
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constraint is given by
R.={xeR"|alx=b,icl/k},

where I/k is the set I with element k removed. Consistent with the
definitions given in Ref. 1, constraint k is redundant if and only if R=R,
and is necessary otherwise. If x* e R, the set of indices of all constraints
active at x* will be denoted by A(x*). The paper also makes use of the
regions given by

R(x*)={xeR"|a]x=b, ic A(x*)},
R (x*)={xeR"|alx=b,ic A(x*)/k}.

It is easily shown that, if k € A(x™), then constraint k is redundant if and
only if R{x*)= R, (x¥).

In the algorithm given below, any constraint which is classified as
redundant is immediately removed from the set of constraints defining R,
yielding a new representation of R. Thus, the final representation of R (i.e.,
the representation which contains only necessary constraints) depends on
the order in which the constraints are classified. If there are no implicit
equalities in the initial representation of R, the final representation is
minimal (Ref. 6).

3. Theorems for the Classification of Constraints

The algorithms in Refs. 2, 6, 7, 8, as well as the one presented in this
paper are based primarily on the following theorem.

Theorem 3.1. The kth inequality is redundant if and only if problem
LP, has an optimal solution x* with ax* < b,, where LP, is given by

LP,: maximize a]x,
subject to x € R,.

Proof. See Ref. 1 or 11. i

Theorem 3.1 suggests the following naive classification algorithm which
will be referred to as Strategy 1. Solve LP,, for each ke[, immediately
removing from I any constraints found to be redundant, While LP, is being
solved, it is called the controlling LP.

This naive algorithm, and subsequent algorithms, are designed so that
all extreme points encountered in the solution of the controlling LP are in
R. If a step was to be made outside R, then R # R,. In that case, constraint
k is classified as necessary and the controlling LP is changed.
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The following corollaries improve on Strategy 1 by providing mechan-
ism for immediately classifying other constraints, while LP, is the controlling
LP. The modification of Strategy 1 which makes use of the following
corollaries will be referred to below as Strategy 2.

Corollary 3.1. Let x € R. If the gradients of the constraints with indices
in the set A(x) are linearly independent, then all such constraints are
necessary.

Proof. See Ref. 1 or 11. ]

Corollary 3.2. Let x < R, and consider the system of equations
L uai=a. (1)

i€ A(xXIN?

(a) If there exists a solution to (1) such that u; =0, for all ie A(x)/t,
then constraint ¢ is redundant.

(b) If t€ A(x) and if there exists a solution to (1) such that, for some
e ACO\t, u,>0 and u; =0, for all i€ A(x)\{¢#, 7}, then constraint 7 is
redundant.

Proof. See Ref. 1 or 11. O
Corollary 3.3. Let x< R, and let s be any nonzero vector, For each
iel, define
o; = +00, ifals=0,
o,=(b;—alx)/als, otherwise.
Set
o=min{o;|icI}.
If o is defined by a unique index r, then constraint r is necessary.

Proof. See Ref. 11 or 12. g

Note that Corollary 3.2(a) is a statement of the optimality conditions
for LP,, while Corollary 3.2(b) is a rearrangement of the terms in Eq. (1).
Corollary 3.3 implies that constraint r is necessary if it is the unique
constraint defining the boundary of R that intersects the half-line x +os,
o=0.

4. Classification at a Degenerate Extreme Point

The procedure DEPS for removing redundancy at extreme points is
based primarily on the following theorem and corollary.
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Theorem 4.1. Let x*< R. Constraint x € A(x*) is redundant if and
only if x* is an optimal solution to the following problem:

LP. (x*): maximize ax,
subject to x € R {x*).

Proof. Constraint « ¢ A{x*) is redundant if and only if R{(x*)=
R, (x*). By definition, R(x*} = R, (x*) if and only if there is no solution x
to

alx>b,,
alx=b, forallie A(x*)\x.
Since k € A(x™), this is equivalent to the system
al(x—x*)>0,
al(x—x*)<0, forall ie A(x™)\«.

It then follows from Farkas’ theorem (Ref. 13) that the systern has no
solution if and only if x* is an optimal solution to LP,(x*). Thus, constraint
k € A(x*) is redundant if and only if x* is an optimal solution to
LP, (x*). O

It should be noted that Theorem 4.1 is essentially Theorem 3.1 applied
to the smaller and simpler LP,(x*). The LP is smaller, since the number
of constraints is reduced from m to [A(x*)|, where | -| denotes set cardinality.
It is simpler in that it has at most one extreme point. If it does have an
extreme point, then x* is the only extreme point and either x* is optimal
or the LP is unbounded from above,

The following corollary is analogous to Corollary 3.1.

Corollary 4.1. Let x*c R be an extreme point with [A(x*)|=n+1.

Let t€ A(x™), and consider the equation
Y wa =a,. 2)
e A(x®)N\ ¢

(a) If the solution to (2) is such that »,; =0, for all ie A(x*)\, then
constraint ¢ is redundant and all constraints i € A(x*)\¢ are necessary.

(b} If the solution to (2) is such that, for some re A(x*)\t, u, >0
and u;<0, for all ie A(x*)\{, 7}, then constraint r is redundant and
constraints i € A(x*)\ 7 are necessary.

(c) If neither the hypotheses in (a) nor those in (b) are satisfied, then
all constraints i € A(x*) are necessary.

Proof. Parts (a) and (b) follow from Corollaries 3.1 and 3.2 and the
fact that x™ is an extreme point of R. Part (c) follows by contradiction; i.e.,
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if there is a redundant constraint, then the hypotheses of either (a) or (b)
are satisfied. O

Note that, if |A(x*)|=n-+1, then Corollary 4.1 implies that all con-
straints with indices in A(x™) can be classified by the solution of a single
system of linear equations, The modification of Strategy 2 which includes
DEPS will be referred to as Strategy 3.

5. Classification Algorithm

The flow chart in Fig. 1 gives a general description of the algorithm.
See Ref. 11 for a detailed description. The algorithm is initialized (Box A)
with the index k of a controlling LP and with an extreme point x of R,
(and of R). The algorithm moves from extreme point to extreme point of
R until LP, is solved or constraint k is classified.

Box B checks for degeneracy. If x is nondegenerate, then control passes
to Box E. If x is degenerate, then control passes to subroutine DEPS (Box
C) and returns with all constraints in A(x) classified. Subroutine DEPS is
essentially the Strategy 2 algorithm applied to the smaller set of constraints
A(x), and the controlling LP’s are the smaller and simpler LPx(x)’s. If
constraint k was classified (Box D), then either a new controlling LP is
determined or the algorithm terminates with all constraints classified (Box
F). If the algorithm did not terminate, then control passes to Box E.

Box E tests the optimality of x for LP,. If x is optimal, constraint k
is classified as redundant and control passes to Box F. Otherwise, control
passes to Box H, where an ascent direction and stepsize for LP, is deter-
mined. If the stepsize is such that the next extreme point would be in Ry
but not in R, constraint k is classified as necessary {Box J) and control
returns to Box F. Otherwise, x is tested for optimality with respect to other
LP.’s in an attempt to immediately classify constraints as redundant (Box
I). Finally, an update is made to a new extreme point of R, (Box G) and
control returns to Box B.

In the worst case, the algorithm will solve m linear programming
problems. Since each LP can be solved in a finite number of steps (using
Bland’s rules if necessary, Ref. 14), it follows that the classification algorithm
has finite termination.

There are two points about the algorithm which should be noted. Let
J(x),° a subset of A(x), denote the working set; and let D(x) be a non-
singular matrix whose columns contain the gradients of all constraints with
indices in J(x). The set J(x) and the matrix D(x) are equivalent to a choice

5 If x is not an extreme point, then J(x) will contain less than » elements.
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Fig. 1. General description of the classification algorithm.

of basis and basis matrix in the simplex method (Ref, 10). Whenever an
index is to be added to J{x), an attempt is made to add an index from
A(x) which corresponds to a necessary constraint. This tends to reduce the
number of pivots. Also, J(X) must be determined such that the update
results in a nonsingular matrix D{x).

The second point concerns Corollary 3.2, which requires the solution
of a system of linear equations for each constraint tested. The system is not
solved if it can be determined a priori that its solution will not result in a
classified constraint. The algorithm uses the iteration formula x < x+os,
where s is determined by solving, for an appropriate p, D(x)s = —e, and
where e, denotes the pth column of the identity matrix. If als>0 (this
inner product is available from the stepsize procedure) and if >0, it
follows easily that constraint ¢ will not be classified. Also, if x is degenerate,
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no attempt is made to classify the inactive constraints using Corollary 3.2
until subroutine DEPS has classified ali active constraints. This avoids
performing tests that fail due to the choice of the working set.

6. Example

Let W be the set of indices of all unclassified constraints. The algorithm
starts with W= I and stops when W is empty. During the course of the
algorithm, redundant constraints are removed from both W and I, while
necessary constraints are removed only from W. Upon termination, all
constraints with indices in the set I are necessary. Consider the set of
constraints given in Table 1.

The constraints are a representation of the shaded region in Fig. 2. The
unique minimal representation is given by the necessary constraints 2, 3,
8, and 9.

The algorithm proceeds as follows. Set W=1=1{1,...,10}. The con-
trolling LP is LP;. Let x,=(0,0)" so that A(x,)=1{2,4,5,7, 8}. Set J(x,) =
{5, 4} and D{(x,) =[as, a.}.

Since x, is degenerate, enter subroutine DEPS. While inside DEPS,
the controlling LP is LPy{x,). Solve D{x,)v = a,to get v =(-3, 2)". Corollary
3.2(b) implies that constraint 4 is redundant. Set J(x,) = {5, 7} and D(x,) =
[as, a;]. Solve D(xo)v = a, to get v=(—1,2)". Corollary 3.2(b) then implies
that constraint 7 is redundant. Set J(x,) ={5, 8} and D{x,) =[a;, as]. Solve
D(x,)v=a, to get v=_1,—=2)". Since |A(xo)| =|{2, 5, 8}] =3, Corollary 4.1
implies that constraint 5 is redundant and constraints 2 and 8 are necessary.
Thus, W=1{1,3,6,9,10}, I ={1,2,3,6, 8,9, 10}, and J(x,) = {2, 8}. Since all
constraints in A(x,) have been classified, exit DEPS.

Table 1. Constraints of the example.

Constraint Constraint number
X —x; =8 1
—-x,+x,=0 2
X tx,=12 3
=2x,—x,=0 4
—-x; =X, =0 5
—-x, - x,=4 6
—x, =0 7
—-x,=0 8
x =8 9
x,=8 10
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Fig. 2. Example showing redundant and necessary constraints.

The controlling LP is still LP,. Solve D(xo)v=a, to get v=(~1,0)".
Thus, x, is not optimal for LP;. Solve D{(x,)s =(-1,0)” to get the search
direction s=(1,0)" and subsequently the stepsize o =38.

Since a/ s =0, forie{3,9, 10}, and since o> 0, Corollary 3.2(a) is used
only to test the optimality of x, for LPs. In that case, v={(1,2)7, so that
constraint 6 is redundant.

The update gives x,=(8,0)", J(x,)=1{9,8}, D(x,)=[a,, a;], and
A(x;)={1,8,9}. Also, W={1,3,9,10} and I=1{1,2,3,8,9, 10}

Since x, is degenerate, enter subroutine DEPS. Since |A(x,)| =3, Corol-
lary 4.1 is used. Solve D(x,}v = a, to get v=(1, 1). Constraint 1 is classified
as redundant and constraint 9 is classified as necessary. Thus, W = {3, 10}
and I={2,3,8,9,10}. Since all constraints in A(x;) have been classified,
exit DEPS.

Since constraint 1 has been classified in DEPS, the controlling LP is
changed to LP;. Solving D(x,)v=a; gives v=(1,~1)", so that x, is not
optimal. Solving D(x,)s = —e, yields the search direction s =(0,1)7 and a
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stepsize of 8. The stepsize results in a point violating constraint 3, which
implies that R # R;, so that constraint 3 is necessary. Thus, W ={10}, and
the controlling LP is now LP,,. The algorithm proceeds to x, = (8,4)” and
x;=(6, 6)", which is optimal for LP,,. Constraint 10 is then classified as
redundant. Since W is now empty, stop with the set of necessary constraints
I={2,3,8,9}.

7. Implementation
The classification algorithm has been implemented by the double-
precision FORTRAN subroutine Crasry (Ref. 15). The implementation

actually includes a modification of the algorithm as given above. A vector
is used to store the maximum value of a;x, i€ W, that has been attained

Table 2. Description and source of test problems.

Example n m r R % R Source

1 5 7 0 0 0 Ref. 1, p. 32

2 2 7 0 4 57 Ref. 1, p. 33

3 4 11 0 3 27 Ref. 1, p. 46

4 2 8 0 2 25 Ref. 1, p. 57

5 2 7 0 2 28 Ref. 1, p. 64

6 2 6 0 2 33 Ref. 1, p. 76

7 5 10 0 2 20 Ref. 1, p. 85

8 2 10 0 6 60 Section 6

9 2 11 0 8 72 *

10 3 23 0 15 65 *

11 2 23 0 16 69 *

12 11 20 8 7 24 Ref. 10, pp. 227-233
13 44 66 12 0 0 *
14 20 29 0 0 0 Ref. 9, pp. 553-555
15 15 20 0 0 0 Ref. 16, p. 110
16 26 130 18 42 28 Ref. 17, p. 594
17 26 130 18 33 22 Ref. 17, p. 594
18 26 130 18 35 23 Ref. 17, p. 594
19 26 130 18 34 23 Ref. 17, p. 594
20 26 130 18 34 23 Ref. 17, p. 594
21 26 130 18 34 23 Ref. 17, p. 594
22 26 130 18 34 23 Ref. 17, p. 594
23 26 130 18 34 23 Ref. 17, p. 594
24 26 130 18 34 23 Ref. 17, p. 594
25 3 8388 0 8335 99 Ref. 18

* Available from the authors.




JOTA: VOL. 62, NO. 2, AUGUST 1989 235

Table 3. Inner products required for test problems.

Example Strategy 1 Strategy 2 Strategy 3
1 94 39 39
2 87 85 85
3 370 272 259
4 181 133 125
5 154 155 151
6 87 72 67
7 281 221 220
8 156 136 124
9 159 109 93

10 1,371 600 546
11 1,401 364 305
12 1,641 1,143 1,297
13 21,051 14,574 15,874
14 3,570 2,644 2,476
15 1,097 1,183 1,183
16 189,035 192,411 95,020
17 261,854 210,002 111,986
18 237,255 200,368 109,475
19 243,311 212,597 111,899
20 241,583 206,924 109,393
21 248,739 201,274 106,320
22 248,963 210,188 108,568
23 247,633 190,536 106,471
24 246,932 208,399 113,664
25 * 968,279 587,717

* Not available.

at previously encountered extreme points. If the value of a/ x at the current
point is less than or equal to the maximum, then LP,; is not tested for
optimality.

The subroutine was tested with the 25 examples presented in Table 2.
The columns give the number of variables n, inequality constraints m,
equality constraints r, redundant constraints R, and percentage of the
constraints which are redundant, respectively. Each example was solved
using Strategies 1, 2, and 3. The strategies were compared by the number
of inner products required. Comparing the number of iterations is mis-
leading, since the computational effort required for each iteration is different
for each of the strategies. Execution time was proportional to the number
of inner products required. The results are presented in Table 3.

Strategy 3 required the fewest inner products in almost all of the
examples. Although Strategy 3 did not outperform the others in Examples
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12, 13, and 15, it required only about 10% more inner products. In the
larger examples 16 to 25, Strategy 3 required about 50% fewer inner
products.

In general, it is expected that Strategy 3 will be no worse than Strategy
2, but will be significantly better in examples with degeneracy.

8. Conclusions

The algorithm presented in this paper improves on previous algorithms
by the addition of DEPS, a subroutine which efficiently classifies constraints
active at degenerate extreme points. In addition, it implements a degenerate
extreme point strategy. The strategy is to immediately classify the active
constraints whenever a degenerate extreme point is encountered. The idea
is to try to eliminate degeneracy by eliminating redundancy. Numerical
results indicate that DEPS can produce significant savings in the computa-
tional effort required to classify constraints in degenerate systems. When
there is no degeneracy, the algorithm is equivalent to previous methods.

It has been demonstrated (Ref. 1) that the most promising approach
to classifying linear constraints involves a hybrid of a random method (Ref.
12) with a deterministic method. The use of the Strategy 3 algorithm with
a random method is currently under development.
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