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Abstract. This paper presents a degenerate extreme point strategy for 
active set algorithms which classify linear constraints as either redundant 
or necessary. The strategy makes use of an efficient method for classify- 
ing constraints active at degenerate extreme points. Numerical results 
indicate that significant savings in the computational effort required to 
classify the constraints can be achieved. 
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I, Introduction 

This pape r  presents a degenerate  extreme point  strategy for active set 
algori thms which classify linear constraints as either redundant  or necessary. 
The impor tance  o f  being able to detect r edundan t  constraints has been well 
established in Ref. 1. No t  only does the el imination o f  all r edundant  
constraints reduce the computa t ional  effort required to solve an associated 
mathemat ical  p rog ramming  problem, but it also provides insight into the 
mathemat ical  model  represented by the inequalities. Reference t also pro- 
vides an extensive survey of  the literature on redundancy.  A brief  summary  
follows. 
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The first paper devoted entirely to redundancy was given by Boot (Ref. 
2). Later, Zionts [Ref. 3; see also the closely related paper by Thomson et 
al. (Ref. 4)] improved on the implementation of Boot's method by adding 
tests which could immediately identify redundant constraints. Gal (Ref. 5) 
and Telgen (Ref. 6) continued the approach by adding rules for immediately 
identifying necessary constraints and rules for dealing with degeneracy. The 
algorithm presented in this paper can be categorized with the algorithms 
of Rubin (Ref. 7), Telgen (Ref. 6), Gal (Ref. 5), and Zionts and Wallenius 
(Ref. 8). The algorithms are equivalent in that: they classify all constraints 
as redundant or necessary; they produce results that are unconditionally 
correct; they perform iterations of an active set linear programming 
algorithm [for example, the simplex method (Ref. 9) or the Best-Ritter 
method (Ref. 10)]; and they use tests which may immediately classify 
constraints. 

The algorithm presented below is an extension of the above algorithms 
in that it implements a degenerate extreme point strategy (DEPS). The 
strategy is to immediately eliminate redundancy at degenerate extreme 
points that are encountered during the classification algorithm. 

As noted in Ref. 1, redundant constraints may cause degeneracy, which 
in turn may cause near-cycling (Ref. 4). The intent of the strategy is to 
eliminate near-cycling during the classification algorithm. This could result 
in significant computational savings, since a given extreme point may be 
encountered more than once during constraint classification. 

The strategy makes use of a new procedure for removing redundancy 
at extreme points. This procedure, which will be referred to as DEPS, results 
in further computational savings, since it considers simple regions (they 
have at most one extreme point), defined only by the constraints that are 
active. Indeed, numerical results show that the strategy, implemented with 
DEPS, can produce significant savings in the computational effort required 
to classify the constraints. 

2. Problem Formulation, Definitions, and Notation 

This paper is concerned with the set of linear constraints that represent 
the region R, where 

R = {x  ~ R ' ~ l a r x < -  bl, i ~ I} ,  

and where I ={1,. . . . .  m}. 5 The region represented by all but the kth 

5 Equality constraints are omitted from the discussion, since they are handled in a straightfor- 
ward manner.  See Ref. 10, pp. 281-288. 
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constraint is given by 

Rk = { x 6  R" [aTx<--bi, ic  I / k } ,  

where I / k  is the set I with element k removed. Consistent with the 
definitions given in Ref. 1, constraint k is redundant if and only if R = Rk 
and is necessary otherwise. If  x* ~ R, the set of indices of  all constraints 
active at x* will be denoted by A(x*).  The paper also makes use of  the 
regions given by 

R(x*)  = {x e R" ] aTx <-- bl, i e A(x*)}, 

Rk(x*) = {x c R n l a r  x <- bi, i ~ A ( x * ) /  k}. 

It is easily shown that, if  k ~ A(x*) ,  then constraint k is redundant if and 
only if R(x*)  = Rk(x*). 

In the algorithm given below, any constraint which is classified as 
redundant is immediately removed from the set of constraints defining R, 
yielding a new representation of R. Thus, the final representation of R (i.e., 
the representation which contains only necessary constraints) depends on 
the order in which the constraints are classified. If there are no implicit 
equalities in the initial representation of R, the final representation is 
minimal (Ref. 6). 

3. Theorems for the Classification of Constraints 

The algorithms in Refs. 2, 6, 7, 8, as well as the one presented in this 
paper are based primarily on the following theorem. 

Theorem 3.1. The kth inequality is redundant if and only if problem 
LPk has an optimal solution x* with a[x*<_ bk, where LPk is given by 

LPk : maximize a[x,  
subject to x ~ Rk. 

Proof. See Re~ 1 or 11. [] 

Theorem 3.1 suggests the following naive classification algorithm which 
will be referred to as Strategy 1. Solve LPk, for each k~ 10 immediately 
removing from I any constraints found to be redundant. While LPk is being 
solved, it is called the controlling LP. 

This naive algorithm, and subsequent algorithms, are designed so that 
all extreme points encountered in the solution of the controlling LP are in 
R. If a step was to be made outside R, then R # Rk. In that case, constraint 
k is classified as necessary and the controlling LP is changed. 
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The following corollaries improve on Strategy 1 by providing mechan- 
ism for immediately classifying other constraints, while LPk is the controlling 
LP. The modification of  Strategy 1 which makes use of  the following 
corollaries will be referred to below as Strategy 2. 

Corollary 3.1. Let x ~ R. I f  the gradients of  the constraints with indices 
in the set A(x )  are linearly independent,  then all such constraints are 
necessary. 

Proof. See Ref. 1 or 11. [] 

Corollary 3.2, Let x c R, and consider the system of  equations 

E uiai = a,. (1) 
i~A(x) \ t  

(a) I f  there exists a solution to (1) such that ul >- O, for all i ~ A (x ) / t ,  
then constraint t is redundant.  

(b) I f  t ~ A(x )  and if there exists a solution to (1) such that, for some 
r ~ A ( x ) \ t ,  u , > 0  and ui-<0, for all i ~ A ( x ) \ { t , r } ,  then constraint r is 
redundant.  

Proof. See Ref. 1 or 11. [] 

Corollary 3.3. Let x ~ R, and let s be any nonzero vector. For each 
i ~ I, define 

crj = + ~ ,  if  a f s  <- O, 

cri = ( b l -  afx)/ari  s, otherwise. 

Set 

cr = min{o-i [ i ~ I}. 

I f  cr is defined by a unique index r, then constraint r is necessary. 

Proof. See Ref. 11 or 12. D 

Note that Corollary 3.2(a) is a statement of  the optimality conditions 
for LPr, while Corollary 3.2(b) is a rearrangement of  the terms in Eq. (1). 
Corollary 3.3 implies that constraint r is necessary if it is the unique 
constraint defining the boundary  of R that intersects the half-line x + ors, 
tr_>0. 

4. Classif ication at a Degenerate  Extreme Point  

The procedure DEPS for removing redundancy at extreme points is 
based primarily on the following theorem and corollary. 
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Theorem 4.1. Let x*~R.  Constraint •cA(x*) is redundant if and 
only if x* is an optimal solution to the following problem: 

LP~(x*): maximize a~x, 
subject to x ~ R~ (x*). 

ProoL Constraint K ~ A(x*) is redundant if and only if R(x*)= 
R~(x*). By definition, R(x*)= R~(x*) if and only if there is no solution x 
to 

T aKx> b~, 

aTx<-bi, for all i~A(x*)\K. 

Since • ~ A(x*), this is equivalent to the system 

ar~(x - x*) > O, 

ar(x-x*)<--O, for all ieA(x*)\v,.  

It then follows from Farkas' theorem (Ref. 13) that the system has no 
solution if and only if x* is an optimal solution to LPK (x*). Thus, constraint 
KeA(x*)  is redundant if and only if x* is an optimal solution to 
LP~(x*). [] 

It should be noted that Theorem 4.1 is essentially Theorem 3.1 applied 
to the smaller and simpler LPK (x*). The LP is smaller, since the number 
of constraints is reduced from m to [A(x*)t, where t" I denotes set cardinality. 
It is simpler in that it has at most one extreme point. If  it does have an 
extreme point, then x* is the only extreme point and either x* is optimal 
or the LP is unbounded from above. 

The following corollary is analogous to Corollary 3.1. 

Corollary 4.1. Let x*6 R be an extreme point with [A(x*)l = n + 1. 
Let t ~ A(x*), and consider the equation 

uiai = a,. (2) 
i~A(x*)\t 

(a) If  the solution to (2) is such that u i - 0 ,  for all i~A(x*) \ t ,  then 
constraint t is redundant and all constraints i cA(x* ) \ t  are necessary. 

(b) If  the solution to (2) is such that, for some r e  A(x*)\t, u~> 0 
and ui-.<0, for all i~A(x*)k{t,  r}, then constraint r is redundant and 
constraints i ~ A(x*)\  r are necessary. 

(c) If  neither the hypotheses in (a) nor those in (b) are satisfied, then 
all constraints i ~ A(x*) are necessary. 

ProoL Parts (a) and (b) follow from Corollaries 3.1 and 3.2 and the 
fact that x* is an extreme point of R. Part (c) follows by contradiction; i.e., 
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if there is a redundant  constraint, then the hypotheses of either (a) or (b) 
are satisfied. [] 

Note that, if [A(x*)[ = n + 1, then Corollary 4.1 implies that all con- 
straints with indices in A(x*) can be classified by the solution of  a single 
system of  linear equations. The modification of  Strategy 2 which includes 
DEPS will be referred to as Strategy 3. 

5. Classification Algorithm 

The flow chart in Fig. 1 gives a general description of the algorithm. 
See Ref. 11 for a detailed description. The algorithm is initialized (Box A) 
with the index k of a controlling LP and with an extreme point x of Rk 
(and of  R). The algorithm moves from extreme point to extreme point of  
R until LPk is solved or constraint k is classified. 

Box B checks for degeneracy. If x is nondegenerate, then control passes 
to Box E. If  x is degenerate, then control passes to subroutine DEPS (Box 
C) and returns with all constraints in A(x) classified. Subroutine DEPS is 
essentially the Strategy 2 algorithm applied to the smaller set of  constraints 
A(x), and the controlling LP's are the smaller and simpler LPk(x)'s. If  
constraint k was classified (Box D), then either a new controlling LP is 
determined or the algorithm terminates with all constraints classified (Box 
F). If  the algorithm did not terminate, then control passes to Box E. 

Box E tests the optimality of x for LPk. If  x is optimal, constraint k 
is classified as redundant and control passes to Box F. Otherwise, control 
passes to Box H, where an ascent direction and stepsize for LPk is deter- 
mined. I f  the stepsize is such that the next extreme point would be in Rk 
but not in R, constraint k is classified as necessary (Box J) and control 
returns to Box F. Otherwise, x is tested for optimality with respect to other 
LPt's in an attempt to immediately classify constraints as redundant (Box 
I). Finally, an update is made to a new extreme point of Rk (Box G) and 
control returns to Box B. 

In the worst case, the algorithm will solve m linear programming 
problems. Since each LP can be solved in a finite number of  steps (using 
Bland's rules if necessary, Ref. 14), it follows that the classification algorithm 
has finite termination. 

There are two points about the algorithm which should be noted. Let 
J ( x ) ,  6 a subset of A(x), denote the working set; and let D(x) be a non- 
singular matrix whose columns contain the gradients of all constraints with 
indices in J(x). The set J(x) and the matrix D(x) are equivalent to a choice 

If x is not an extreme point, then J(x) will contain less than n elements. 
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Fig. 1. General description of the classification algorithm. 

of basis and basis matrix in the simplex method (Ref. 10). Whenever an 
index is to be added to J(x), an attempt is made to add an index from 
A(x) which corresponds to a necessary constraint. This tends to reduce the 
number of  pivots. Also, J(X)  must be determined such that the update 
results in a nonsingular matrix D(x). 

The second point concerns Corollary 3.2, which requires the solution 
of  a system of linear equations for each constraint tested. The system is not 
solved if it can be determined a priori that its solution will not result in a 
classified constraint. The algorithm uses the iteration formula x ~-x+  ors, 
where s is determined by solving, for an appropriate p, D(x)s = - e p  and 
where ep denotes the pth column of the identity matrix. If a~s > 0 (this 
inner product  is available from the stepsize procedure) and if o '>  0, it 
follows easily that constraint t will not be classified. Also, i f x  is degenerate, 
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no  a t t empt  is made  to classify the inactive constraints  using Corol la ry  3.2 
until subrout ine  D E P S  has  classified all active constraints .  This avoids 
pe r fo rming  tests that  fail due  to the choice o f  the working set. 

6. Example 

Let W be the set o f  indices o f  all unclassif ied constraints .  The  a lgor i thm 
starts with W =  I and  stops when  W is empty .  Dur ing  the course  o f  the 
a lgor i thm,  r edundan t  constraints  are r emoved  f rom both  W and I, while 
necessary  constra ints  are r emoved  only f rom W~ U p o n  terminat ion ,  all 
constra ints  with indices in the set I are necessary.  Cons ider  the set o f  
constra ints  given in Table  1. 

The  constra ints  are a represen ta t ion  o f  the shaded  region in Fig. 2. The  
unique min ima l  represen ta t ion  is given by  the necessary constraints  2, 3, 
8, and 9. 

The a lgor i thm proceeds  as follows. Set W = I -- { 1 , . . . ,  10}. The con- 
troll ing LP  is LP1. Let Xo = (0, 0) r so that  A(xo) = {2, 4, 5, 7, 8}. Set J(Xo) = 

{5, 4} and  D(xo) = [as, a4]. 
Since xo is degenerate ,  enter  subrout ine  DEPS.  While  inside DEPS,  

the control l ing LP is LP2(xo). Solve D(xo) v = a 2 to get v = ( - 3 ,  2) T. Coro l la ry  
3.2(b) implies  that  constra int  4 is redundant .  Set J(xo) = {5, 7} and  D(xo) = 

[as ,  a7]. Solve D(xo)v  = a2 to get v = ( - 1 ,  2) T. Corol la ry  3.2(b) then implies 
tha t  const ra in t  7 is redundant .  Set J(xo) = {5, 8} and  D(xo) = [as ,  as]. Solve 
D(xo)v  = a2 to get v = ( 1 , - 2 )  r. Since [a(xo)l = [{2, 5, 8}1 = 3, Corol la ry  4.1 
implies  tha t  constra int  5 is r edundan t  and  constraints  2 and  8 are necessary.  
Thus,  W = {t,  3, 6, 9, 10}, I = {1, 2, 3, 6, 8, 9, 10}, and  J(xo) = {2, 8}. Since all 
constraints  in A(xo) have been classified, exit DEPS.  

Table 1. Constraints of the example. 

Constraint Constraint number 

x I - x2~8  1 
-xl + x2 <-O 2 

xl +x2- < 12 3 
-2x~ -x2~0  4 
-x~ - xz -< 0 5 
- x  t - x 2 ~ 4  6 

- x  I ~ 0 7 
-xz<-O 8 

x ~ 8  9 
x z ~ 8 10 



JOTA: VOL. 62, NO. 2, AUGUST t989 233 

X2 

3"- 
4O 

Fig. 2. Example showing redundant and necessary" constraints. 

The  control l ing LP is still LP~. Solve D(xo)v = al to get v = ( - 1 ,  0) r. 
Thus,  x0 is not  opt imal  for  LPI .  Solve D(xo)s = ( - 1 ,  0) :~ to get the search 
direct ion s = (1, 0) r and  subsequent ly  the stepsize ¢r = 8. 

Since a iTS -<- 0, for  i c {3, 9, t 0}, and since o- > 0, Corol la ry  3.2(a) is used 
only to test the op t imal i ty  of  Xo for  LP6. In that  case, v = (1, 2) T, so that  
const ra in t  6 is redundant .  

The  upda t e  gives xl = (8, 0) T, J(xO = {9, 8}, D(x~) = lag,  as], and  
A(xl) = {1, 8, 9}. Also, W = {1, 3, 9, 10} and  I = {1, 2, 3, 8, 9, 10}. 

Since xl is degenera te ,  enter  subrout ine  DEPS.  Since IA(xi)l = 3, Corol-  
lary 4.1 is used. Solve D(x~)v = a~ to get v = (1, 1). Cons t ra in t  1 is classified 
as r e d u n d a n t  and  const ra in t  9 is classified as necessary.  Thus,  W =  {3, 10} 
and  I = {2, 3, 8, 9, 10}. Since all constraints  in A(x~) have been classified, 
exit DEPS.  

Since constra int  1 has been  classified in DEPS,  the control l ing LP is 
changed  to LP~. Solving D(xOv=a3 gives v = ( 1 , - 1 )  7, so that  xl is not  
opt imal .  Solving D(xOs = - e 2  yields the search direct ion s = (0, 1) r and  a 
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s teps ize  o f  8. T h e  s t eps ize  resu l t s  in  a p o i n t  v i o l a t i n g  c o n s t r a i n t  3, w h i c h  

i m p l i e s  t h a t  R ¢ R3,  so  t h a t  c o n s t r a i n t  3 is neces sa ry .  Thus ,  W = {10}, a n d  

t h e  c o n t r o l l i n g  L P  is n o w  LPto .  T h e  a l g o r i t h m  p r o c e e d s  to x2 = (8, 4) r a n d  

x3 = (6, 6) r, w h i c h  is o p t i m a l  fo r  LPlo .  C o n s t r a i n t  10 is t h e n  c lass i f i ed  as 

r e d u n d a n t .  S ince  W is n o w  e m p t y ,  s top  w i t h  t he  set  o f  n e c e s s a r y  cons t r a in t s  

• = { 2 , 3 , 8 , 9 } .  

7.  I m p l e m e n t a t i o n  

T h e  c l a s s i f i ca t ion  a l g o r i t h m  has  b e e n  i m p l e m e n t e d  by  the  d o u b l e -  

p r e c i s i o n  FORTRAN s u b r o u t i n e  CLASFV (Ref .  15). T h e  i m p l e m e n t a t i o n  

a c t u a l l y  i n c l u d e s  a m o d i f i c a t i o n  o f  t he  a l g o r i t h m  as g iven  a b o v e .  A v e c t o r  

is u s e d  to  s to re  t he  m a x i m u m  v a l u e  o f  a Tx, i ~ W, tha t  has  b e e n  a t t a i n e d  

Table 2. Descript ion and source of  test problems. 

Example n m r R % R Source 

1 5 7 0 0 0 
2 2 7 0 4 57 
3 4 11 0 3 27 
4 2 8 0 2 25 
5 2 7 0 2 28 
6 2 6 0 2 33 
7 5 t0 0 2 20 
8 2 10 0 6 60 
9 2 11 0 8 72 

10 3 23 0 15 65 
11 2 23 0 16 69 
12 11 20 8 7 24 
13 44 66 12 0 0 
14 20 29 0 0 0 
15 15 20 0 0 0 
16 26 130 18 42 28 
17 26 130 18 33 22 
18 26 130 18 35 23 
19 26 130 18 34 23 
20 26 130 18 34 23 
21 26 130 18 34 23 
22 26 130 18 34 23 
23 26 130 18 34 23 
24 26 130 18 34 23 
25 3 8388 0 8335 99 

Ref. I, p. 32 
Ref. 1, p. 33 
ReL 1, p. 46 
Ref. 1, p. 57 
Ref. 1, p. 64 
ReL 1, p. 76 
Ref. 1, p. 85 
Section 6 

Ref. 10, pp. 227-233 

Ref. 9, pp. 553-555 
Ref. 16, p. 110 
Ref. 17, p. 594 
Ref. 17, p. 594 
Ref. 17, p, 594 
Ref. 17, p. 594 
Ref. 17, p. 594 
Ref. 17, p. 594 
Ref. 17, p. 594 
Ref. 17, p. 594 
Ref. 17, p. 594 
Ref. 18 

* Available from the authors. 
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Table 3. Inner products required for test problems. 

Example Strategy 1 Strategy 2 Strategy 3 

1 94 39 39 
2 87 85 85 
3 370 272 259 
4 18t t33 125 
5 154 155 151 
6 87 72 67 
7 281 221 220 
8 156 136 t24 
9 159 I09 93 

10 1,371 600 546 
11 1,401 364 305 
t2 t,641 1,t43 t,297 
13 21,051 14,574 15,874 
14 3,570 2,644 2,476 
15 1,097 1,183 1,183 
16 189,035 192,411 95,020 
17 261,854 210,002 t I 1,986 
18 237,255 200,368 I09,475 
19 243,311 212,597 111,899 
20 241,583 206,924 109,393 
21 248,739 201,274 106,320 
22 248,963 2t0,188 t08,568 
23 247,633 190,536 106,47t 
24 246,932 208,399 113,664 
25 * 968,279 587,717 

* Not available. 

at previously encountered extreme points. If the value of afx at the current 
point is less than or equal to the maximum, then LP~ is not tested for 
optimality. 

The subroutine was tested with the 25 examples presented in Table 2. 
The columns give the number of variables n, inequality constraints m, 
equality constraints r, redundant constraints R, and percentage of the 
constraints which are redundant, respectively. Each example was solved 
using Strategies 1, 2, and 3. The strategies were compared by the number 
of inner products required, Comparing the number of iterations is mis- 
leading, since the computational effort required for each iteration is different 
for each of the strategies. Execution time was proportional to the number 
of inner products required. The results are presented in Table 3. 

Strategy 3 required the fewest inner products in almost all of the 
examples. Although Strategy 3 did not outperform the others in Examples 



236 JOTA: VOL. 62, NO. 2, AUGUST 1989 

12, 13, and 15, it required only about 10% more inner products. In the 
larger examples 16 to 25, Strategy 3 required about 50% fewer inner 
products. 

In general, it is expected that Strategy 3 will be no worse than Strategy 
2, but will be significantly better in examples with degeneracy. 

8. Conclusions 

The algorithm presented in this paper improves on previous algorithms 
by the addition of DEPS, a subroutine which efficiently classifies constraints 
active at degenerate extreme points. In addition, it implements a degenerate 
extreme point strategy. The strategy is to immediately classify the active 
constraints whenever a degenerate extreme point is encountered. The idea 
is to try to eliminate degeneracy by eliminating redundancy. Numerical 
results indicate that DEPS can produce significant savings in the computa- 
tional effort required to classify constraints in degenerate systems. When 
there is no degeneracy, the algorithm is equivalent tO previous methods. 

It has been demonstrated (Ref. 1) that the most promising approach 
to classifying linear constraints involves a hybrid of a random method (Ref. 
12) with a deterministic method. The use of  the Strategy 3 algorithm with 
a random method is currently under development. 
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